作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
推荐系统是数据挖掘的一个重要部分,能够实现海量数据信息的快速、全面、准确过滤.然而基于以往传统单个主机模式实现的推荐算法其计算过程耗费的时间过长,已经不能满足当前商业时代快速可靠的技术追求.大数据平台Spark分布式计算框架通过引入RDD(弹性分布式数据集)的概念以及基于内存的运算模式,能够更好地适应大数据挖掘这一应用场景.推荐算法在实现过程中存在多次迭代计算,Spark计算框架的使用可以极大提升推荐系统的运算效率.文中利用Spark平台设计了一个基于物品的协同过滤(Item-CF)算法的商品推荐系统,并将其应用在MovieLens数据集上运行测试.实验结果表明,该系统能够提高推荐精确度并降低运算时间.
推荐文章
基于Spark的混合推荐算法研究
推荐算法
分布式计算
Spark
增量式更新
基于Spark的高校图书馆书目推荐系统
高校图书馆
个性化推荐
协同过滤
Spark
公开数据优化
时间偏置
基于Hadoop平台的Spark快数据推荐算法分析与应用
Hadoop
Spark
快数据
ALS算法
PageRank算法
基于Spark的分布式科技专家推荐模型
专家推荐
近邻传播聚类算法
萤火虫算法
Spark
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Spark的推荐系统的设计与实现
来源期刊 计算机技术与发展 学科 工学
关键词 大数据 Spark平台 推荐系统 协同过滤(CF) 数据挖掘
年,卷(期) 2018,(10) 所属期刊栏目 应用开发研究
研究方向 页码范围 194-198
页数 5页 分类号 TP302
字数 4570字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.10.040
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李涛 南京邮电大学通信与信息工程学院 35 164 6.0 11.0
2 李星 南京邮电大学通信与信息工程学院 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (191)
参考文献  (8)
节点文献
引证文献  (11)
同被引文献  (29)
二级引证文献  (7)
1938(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(10)
  • 引证文献(6)
  • 二级引证文献(4)
2020(6)
  • 引证文献(3)
  • 二级引证文献(3)
研究主题发展历程
节点文献
大数据
Spark平台
推荐系统
协同过滤(CF)
数据挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导