作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的K-means算法由于随机选择初始聚类中心,使得聚类结果不精确.随着网络数据量的激增,传统的串行算法运算时间明显太长,有研究者利用Hadoop并行框架进行K-means并行化研究,虽然提高了算法的运行时间,但K-means算法在聚类判定时需要反复迭代,反复进行磁盘的读写操作,很大一部分时间花费在磁盘操作上,并行算法的效率大打折扣.为此,本文提出基于Spark框架的改进并行K-means算法,通过对RDD的操作有效解决了频繁的磁盘读写.在标准数据集下,进行对比实验,通过聚类效果和算法并行的加速比,验证了改进算法的有效性.
推荐文章
基于Spark的并行K-means算法研究
Spark
K-means
PSO
迭代计算
基于Spark的改进K-means算法的并行实现
聚类算法
简化轮廓系数
形态学相似距离
相似性度量
基于MapReduce框架下K-means的改进算法
MapReduce框架
K-means算法
数据挖掘
聚类分析
Spark环境下K-means初始中心点优化研究综述
K-均值算法
分布式内存计算框架
算法优化
聚类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Spark框架的改进并行K-means算法研究
来源期刊 智能计算机与应用 学科 工学
关键词 Spark K-means Map Reduce Hadoop 加速比
年,卷(期) 2018,(1) 所属期刊栏目
研究方向 页码范围 76-78
页数 3页 分类号 TP311.13
字数 2252字 语种 中文
DOI 10.3969/j.issn.2095-2163.2018.01.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邓青 9 9 2.0 2.0
2 杨宁 5 5 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (196)
参考文献  (5)
节点文献
引证文献  (5)
同被引文献  (7)
二级引证文献  (2)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Spark
K-means
Map
Reduce
Hadoop
加速比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能计算机与应用
双月刊
2095-2163
23-1573/TN
大16开
哈尔滨市南岗区繁荣街155号(哈工大新技术楼916室)
14-144
1985
chi
出版文献量(篇)
6183
总下载数(次)
26
总被引数(次)
14240
论文1v1指导