作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
软件缺陷预测模型因为软件规模持续扩大以及安全性要求越来越高,变得越来越重要.支持向量机(SVM)模型突出优点是它具有较强的非线性分类能力,所以在软件缺陷预测应用非常广泛.但是,SVM模型缺乏有效的方法来确定最佳参数,以至于不能达到理想的准确度.所以,提高SVM模型的参数,提高SVM模型的软件缺陷预测能力成为了研究热点.蝙蝠算法是一种启发式搜索算法,它模型简单,易于实现,但是却易陷入局部最优,因此采用加入莱维飞行的蝙蝠算法对SVM模型的参数选择进行优化.为了测试这个新模型的性能,仿真实验使用了一些软件缺陷预测的公共数据集,然后将结果与传统的启发式算法进行比较.实验结果表明,LBA-SVM模型的分类能力优于其他方法.
推荐文章
基于改进BP算法的软件缺陷预测模型研究
缺陷预测模型
模拟退火算法
JCUDA技术
BP算法
基于不相似性的软件缺陷预测算法
类不均衡学习
软件缺陷预测
原型选择
不相似性转换
基于LASSO-SVM的软件缺陷预测模型研究
软件缺陷预测
最小绝对值压缩与选择方法
特征选择
支持向量机
交叉验证
基于CS-ANN的软件缺陷预测模型研究
软件缺陷预测
人工神经网络
布谷鸟搜索
软件质量
机器学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蝙蝠算法的软件缺陷预测模型
来源期刊 计算机技术与发展 学科 工学
关键词 支持向量机 软件缺陷预测 莱维飞行 蝙蝠算法
年,卷(期) 2018,(12) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 74-78
页数 5页 分类号 TP391
字数 4895字 语种 中文
DOI 10.3969/j.issn.1673-629X.2018.12.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨晓琴 11 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (162)
共引文献  (458)
参考文献  (13)
节点文献
引证文献  (2)
同被引文献  (14)
二级引证文献  (2)
1943(1)
  • 参考文献(0)
  • 二级参考文献(1)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(4)
  • 参考文献(0)
  • 二级参考文献(4)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(6)
  • 参考文献(0)
  • 二级参考文献(6)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(7)
  • 参考文献(0)
  • 二级参考文献(7)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(8)
  • 参考文献(0)
  • 二级参考文献(8)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(7)
  • 参考文献(1)
  • 二级参考文献(6)
2001(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(10)
  • 参考文献(0)
  • 二级参考文献(10)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(14)
  • 参考文献(3)
  • 二级参考文献(11)
2008(11)
  • 参考文献(1)
  • 二级参考文献(10)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
支持向量机
软件缺陷预测
莱维飞行
蝙蝠算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导