基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有图像分割方法往往受图像模糊和噪声的影响,提取的轮廓不准确.为了提取建筑物的精确轮廓,提出了一种基于卷积神经网络的集成方法,包括建筑物定位、形状判断、形状匹配等步骤.实验证明,无论是对DSM图像还是多光谱影像,该方法都能获得精确的建筑物轮廓.
推荐文章
基于全卷积神经网络的无人机影像建筑物提取
深度学习
卷积神经网络
DSM建筑物提取
残差学习
遥感
基于卷积神经网络的架空铁塔护坡提取
架空铁塔护坡
卷积神经网络
目标检测
语义分割
建筑施工项目精细化管理刍议
建筑施工
精细化管理
施工前期
施工过程
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的建筑物精细化提取
来源期刊 地理空间信息 学科 地球科学
关键词 建筑物提取 卷积神经网络 先验形状
年,卷(期) 2018,(3) 所属期刊栏目 测绘工程案例
研究方向 页码范围 97-100
页数 4页 分类号 P237
字数 2856字 语种 中文
DOI 10.3969/j.issn.1672-4623.2018.03.029
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
建筑物提取
卷积神经网络
先验形状
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理空间信息
月刊
1672-4623
42-1692/P
大16开
湖北省武汉市武昌中南一路50号湖北省测绘局地理信息局航测楼二楼
2003
chi
出版文献量(篇)
5778
总下载数(次)
16
总被引数(次)
25892
论文1v1指导