基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
肺部LDCT(Low-Dose Computed Tomography)图像中噪声及条状伪影等异常显著,顶部和底部图像尤为严重.为提高整个肺部LDCT图像的质量,本文提出一种基于结构联合字典的图像降噪方法.首先,利用肺部CT图像的灰度特点,将HRCT(High Resolution Computed Tomography)图像块分类并训练,获得4类字典,通过计算原子的信息熵和HOG(Histogram of Oriented Gradient)特征,得到相应的结构字典,进而构造出结构联合字典;然后,在对肺部LDCT图像进行非局部均值滤波的基础上,将结构联合字典作为全局字典,对图像进行稀疏表示及重构,获得降噪后的图像.为验证算法有效性,选用模拟和临床两类数据进行实验,并与KSVD、AS-LNLM、BF-MCA等3种算法对比.对比发现,本文算法在去除噪声和条状伪影以及保留细节方面效果较好,特别是对序列顶层和底层图像处理优势更加明显.该方法能够显著提升整个肺部LDCT图像的质量.
推荐文章
基于字典训练和高频增强的图像降噪研究
图像降噪
字典训练
稀疏表示
K-SVD算法
基于图像局部几何结构的SAR图像降噪与增强
相干斑
各向异性扩散
结构张量
图像局部几何结构
降噪
增强
基于核字典学习的图像分类
目标分类
稀疏表示
核字典学习
线性鉴别分析
支持向量机
基于字典学习的图像稀疏去噪算法
稀疏字典
K-SVD算法
字典学习
稀疏去噪
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于结构联合字典的肺部LDCT图像降噪
来源期刊 电子学报 学科 工学
关键词 肺部低剂量CT图像 联合字典 稀疏表示 图像降噪
年,卷(期) 2018,(6) 所属期刊栏目 学术论文
研究方向 页码范围 1445-1453
页数 9页 分类号 TP391
字数 7224字 语种 中文
DOI 10.3969/j.issn.0372-2112.2018.06.025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 聂生东 上海理工大学医疗器械与食品学院 113 754 15.0 22.0
2 龚敬 上海理工大学医疗器械与食品学院 11 52 4.0 7.0
3 代晓婷 上海理工大学医疗器械与食品学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (53)
参考文献  (26)
节点文献
引证文献  (2)
同被引文献  (18)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(4)
  • 二级参考文献(2)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(6)
  • 参考文献(6)
  • 二级参考文献(0)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肺部低剂量CT图像
联合字典
稀疏表示
图像降噪
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
上海市自然科学基金
英文译名:
官方网址:http://www.lawyee.net/Act/Act_Display.asp?RID=46696
项目类型:面上项目
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导