基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在面向用户的文章收集系统中,用户会将自己喜欢的文章收集起来构成自己的偏好文章集合,理解用户为何喜欢特定文章、如何精确的找到用户喜欢的文章目前成为了一个重要的研究课题.本文通过基于面向用户的文章收集系统中的一些相关信息,比如文本信息、标签等,来辅助推荐系统更好的进行文章的推荐.文中提出了基于标签卷积神经网络的文本推荐算法,结合神经网络和协同过滤算法的同时,将标签加入到神经网络的设计中.通过在真实的citeulike数据集进行的实验和验证,使用本文的模型可以有效的提高对用户偏好文章预测的准确性.
推荐文章
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于改进型卷积神经网络和行特征的文本检测
文本检测
最大稳定极值区域
卷积神经网络
行特征
C4.5决策树算法
卷积神经网络CNN算法在文本分类上的应用研究
数据挖掘
机器学习
卷积神经网络
文本分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标签卷积神经网络的文本推荐算法
来源期刊 计算机系统应用 学科
关键词 推荐系统 基于内容 卷积神经网络 深度学习 标签
年,卷(期) 2018,(8) 所属期刊栏目 软件技术·算法
研究方向 页码范围 132-137
页数 6页 分类号
字数 5547字 语种 中文
DOI 10.15888/j.cnki.csa.006494
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张谧 复旦大学计算机科学与技术学院 13 73 5.0 8.0
2 马骁烊 复旦大学计算机科学与技术学院 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (34)
参考文献  (8)
节点文献
引证文献  (9)
同被引文献  (27)
二级引证文献  (6)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(8)
  • 引证文献(7)
  • 二级引证文献(1)
2020(6)
  • 引证文献(1)
  • 二级引证文献(5)
研究主题发展历程
节点文献
推荐系统
基于内容
卷积神经网络
深度学习
标签
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
论文1v1指导