基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
标记分布学习作为一种新的学习范式,利用最大熵模型构造的专用化算法能够很好地解决某些标记多样性问题,但是计算量巨大.基于此,引入运行速度快、稳定性更高的核极限学习机模型,提出基于核极限学习机的标记分布学习算法(KELM-LDL).首先在极限学习机算法中通过RBF核函数将特征映射到高维空间,然后对原标记空间建立KELM回归模型求得输出权值,最后通过模型计算预测未知样本的标记分布.与现有算法在各领域不同规模数据集的实验表明,实验结果均优于多个对比算法,统计假设检验进一步说明KELM-LDL算法的有效性和稳定性.
推荐文章
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
基于并行学习的多层极限学习机
神经网络
稀疏编码
极限学习机
并行学习
基于核极限学习机的快速主动学习方法及其软测量应用
主动学习
过程控制
优化
核极限学习机
软测量
化学过程
弹性网络核极限学习机的多标记学习算法
多标记学习
核极限学习机
正则化
弹性网络
径向基函数
坐标下降法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于核极限学习机的标记分布学习
来源期刊 计算机工程与应用 学科 工学
关键词 标记分布学习 极限学习机 回归拟合 核函数
年,卷(期) 2018,(24) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 128-135
页数 8页 分类号 TP391
字数 5581字 语种 中文
DOI 10.3778/j.issn.1002-8331.1808-0341
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程玉胜 安庆师范大学计算机与信息学院 81 339 9.0 14.0
2 王一宾 安庆师范大学计算机与信息学院 63 407 10.0 18.0
3 田文泉 安庆师范大学计算机与信息学院 3 4 1.0 2.0
4 裴根生 安庆师范大学计算机与信息学院 8 24 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (39)
参考文献  (19)
节点文献
引证文献  (4)
同被引文献  (14)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(11)
  • 参考文献(2)
  • 二级参考文献(9)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(15)
  • 参考文献(0)
  • 二级参考文献(15)
2012(12)
  • 参考文献(2)
  • 二级参考文献(10)
2013(7)
  • 参考文献(2)
  • 二级参考文献(5)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(7)
  • 参考文献(7)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
标记分布学习
极限学习机
回归拟合
核函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导