基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对协同过滤算法处理大数据流时响应慢的缺陷,在改善推荐准确度的情况下,提出增量更新算法以加快响应速度,提高推荐系统性能.介绍了当前协同过滤算法以及KNN和Spark的相关知识,阐述了协同过滤算法的增量模型.采用Group Lens网站提供的Movie Lens数据集作为实验数据,应用Socket模拟流和Spark并行计算技术实现增量模型.实验结果显示,在保证推荐准确度的前提下,响应时间明显缩短,说明增量模型适合实时处理大数据流,可缓解数据处理不及时问题.
推荐文章
基于Spark的混合协同过滤算法改进与实现
集成学习
协同过滤
稀疏性
扩展性
Spark流式计算
增量模型
分类
协同过滤算法的研究
推荐系统
协同过滤
基于用户的算法
基于物品的算法
基于GPU的并行协同过滤算法
协同过滤
图形处理器
统一计算设备框架
基于评论与评分的协同过滤算法
协同过滤
数据稀疏性
评论分析
主题模型
用户偏好
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Spark Streaming的增量协同过滤算法
来源期刊 软件导刊 学科 工学
关键词 协同过滤 推荐系统 增量计算 实时流计算 SparkStreaming
年,卷(期) 2018,(6) 所属期刊栏目 算法与语言
研究方向 页码范围 88-91
页数 4页 分类号 TP312
字数 3089字 语种 中文
DOI 10.11907/rjdk.173047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡明 江南大学物联网工程学院 59 712 10.0 26.0
2 曾志武 江南大学物联网工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (13)
二级引证文献  (0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
推荐系统
增量计算
实时流计算
SparkStreaming
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导