基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对磷虾群算法易陷入局部最优、收敛速度慢等缺点,提出了具备反向学习和局部学习能力的磷虾群算法.利用混沌映射和反向学习的思想初始化种群,根据算法迭代次数自适应调整学习维度,对精英个体进行反向学习,能有效保持种群的多样性,选取精英群体,通过自适应的Lévy飞行分布和改进的差分变异算子,提高种群的局部学习能力.这种新颖的元启发方式能加速收敛速度的同时可以保证磷虾群算法的鲁棒性.通过对8个基准函数进行仿真测试,实验结果表明:与最近的KH优化算法相比,该算法在收敛速度、收敛精度等方面得到明显改进.
推荐文章
一种基于正向学习和反向学习的改进鸡群算法
鸡群算法
正向学习
反向学习
基于改进磷虾群算法的K-means算法
磷虾群算法
聚类算法
精英引领
最佳聚类数
动态分群
基于扰动的精英反向学习粒子群优化算法
粒子群优化算法
精英反向学习
惯性权重
极值扰动
局部最优解
基于聚集度的异化磷虾群算法
磷虾群算法
异化
聚集度
变异策略
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具备反向学习和局部学习能力的磷虾群算法
来源期刊 计算机工程与应用 学科 工学
关键词 磷虾群优化算法 种群初始化 精英反向学习 差分变异算子 局部学习
年,卷(期) 2018,(18) 所属期刊栏目 理论与研发
研究方向 页码范围 34-39
页数 6页 分类号 TP18
字数 6184字 语种 中文
DOI 10.3778/j.issn.1002-8331.1707-0154
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗可 长沙理工大学计算机与通信工程学院 92 1085 16.0 28.0
5 肖素琼 长沙理工大学计算机与通信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (79)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(8)
  • 参考文献(5)
  • 二级参考文献(3)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磷虾群优化算法
种群初始化
精英反向学习
差分变异算子
局部学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导