原文服务方: 计算机应用研究       
摘要:
针对短时交通流在线预测时存在的计算复杂性问题,提出了一种最小二乘支持向量机在线式短时交通流预测方法.该方法简化了在线学习过程中Lagrange乘子的求解过程,利用训练数据集滑动时间窗口的移动来控制新样本的加入和旧样本的移除,通过线性运算完成Lagrange乘子的更新,进而完成预测模型的在线更新.测试结果表明,相对已有方法,所提方法在保证预测精度的条件下,能够将在线模型更新时间平均降低约62.64%,是一种有效的在线式短时交通流预测方法.
推荐文章
基于在线LS-SVM的网络预测控制系统
网络控制系统
预测控制
在线最小二乘支持向量机
核函数
基于LS-SVM的在线文本识别方法
支持向量机
在线
文本
系统识别
短时交通流预测方法研究
相关分析
支持向量机
交通流预测
智能交通
基于灰色关联的 LS-SVM道路交通事故预测
道路交通事故
预测
灰色关联分析
最小二乘支持向量机
动态改变惯性权重自适应粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种LS-SVM在线式短时交通流预测方法
来源期刊 计算机应用研究 学科
关键词 短时交通流预测 统计学习 最小二乘支持向量机 在线式学习算法 滑动时间窗口
年,卷(期) 2018,(10) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2965-2968
页数 4页 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2018.10.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 段宗涛 长安大学信息工程学院 39 158 7.0 10.0
3 唐蕾 长安大学信息工程学院 16 64 5.0 7.0
6 康军 长安大学信息工程学院 33 168 8.0 11.0
10 温兴超 长安大学信息工程学院 4 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (271)
参考文献  (13)
节点文献
引证文献  (11)
同被引文献  (32)
二级引证文献  (2)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(18)
  • 参考文献(2)
  • 二级参考文献(16)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(2)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(1)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(10)
  • 引证文献(9)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短时交通流预测
统计学习
最小二乘支持向量机
在线式学习算法
滑动时间窗口
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导