作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
鉴于人体动作识别在现实社会中的重大意义,为了进一步提高动作识别的能力,在研究长短时记忆神经网络及卷积神经网络的基础上,建立时空相关的卷积长短时记忆网络模型,该模型不仅具有LSTM的时序建模能力,还具有CNN刻画局部特征空间的能力,同时具备时空特性.运用该模型在KTH数据库上进行实验,并提出三种时间采样方式,最后与他人的方法进行比较,发现该模型在KTH动作识别上取得了较高的识别率.
推荐文章
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
融合宽残差和长短时记忆网络的动态手势识别研究
手势识别
3D卷积神经网络
长短时记忆网络
宽残差网络
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
多语种文本分类
长短时记忆单元
卷积神经网络
基于长短时记忆神经网络的水库洪水预报
洪水预报
长短时记忆神经网络
预见期
训练速度
白盆珠水库
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于时空采样的卷积长短时记忆网络模型及其应用研究
来源期刊 机电信息 学科
关键词 动作识别 时空相关 卷积长短时记忆网络模型 时间采样
年,卷(期) 2018,(18) 所属期刊栏目 装备应用与研究
研究方向 页码范围 61-63,65
页数 4页 分类号
字数 3739字 语种 中文
DOI 10.3969/j.issn.1671-0797.2018.18.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闭世兰 中南民族大学生物医学工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
动作识别
时空相关
卷积长短时记忆网络模型
时间采样
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电信息
旬刊
1671-0797
32-1628/TM
大16开
南京山西路120号江苏成套大厦12楼
28-285
2001
chi
出版文献量(篇)
19929
总下载数(次)
45
总被引数(次)
30590
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导