作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The advantage of quantum computers over classical computers fuels the recent trend of developing machine learning algorithms on quantum computers, which can potentially lead to breakthroughs and new learning models in this area. The aim of our study is to explore deep quantum reinforcement learning (RL) on photonic quantum computers, which can process information stored in the quantum states of light. These quantum computers can naturally represent continuous variables, making them an ideal platform to create quantum versions of neural networks. Using quantum photonic circuits, we implement Q learning and actor-critic algorithms with multilayer quantum neural networks and test them in the grid world environment. Our experiments show that 1) these quantum algorithms can solve the RL problem and 2) compared to one layer, using three layer quantum networks improves the learning of both algorithms in terms of rewards collected. In summary, our findings suggest that having more layers in deep quantum RL can enhance the learning outcome.
推荐文章
基于recurrent neural networks的网约车供需预测方法
长短时记忆循环神经网络
网约车数据
交通优化调度
TensorFlow
深度学习
倒立摆的Reinforcement Learning模糊自适应控制
单级倒立摆
Reinforcement Learning
模糊自适应控制
Deep web接口查询能力估计
查询接口
查询能力
Deep Web数据源自动分类
Deep Web
查询接口
朴素贝叶斯分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Reinforcement Learning with Deep Quantum Neural Networks
来源期刊 量子信息科学期刊(英文) 学科 医学
关键词 Continuous-Variable QUANTUM COMPUTERS QUANTUM Machine LEARNING QUANTUM REINFORCEMENT LEARNING DEEP LEARNING Q LEARNING Actor-Critic Grid World Environment
年,卷(期) 2019,(1) 所属期刊栏目
研究方向 页码范围 1-14
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Continuous-Variable
QUANTUM
COMPUTERS
QUANTUM
Machine
LEARNING
QUANTUM
REINFORCEMENT
LEARNING
DEEP
LEARNING
Q
LEARNING
Actor-Critic
Grid
World
Environment
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
量子信息科学期刊(英文)
季刊
2162-5751
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
142
总下载数(次)
0
总被引数(次)
0
论文1v1指导