基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法.该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器.最终用训练好的分类器对极化SAR图像进行测试.对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法.
推荐文章
基于目标分解的极化SAR图像SVM监督分类
极化合成孔径雷达
图像分类
目标分解
支持向量机
Wishart迭代
模糊C-均值
基于最小生成树的多特征融合的脑网络分类研究
最小生成树
多特征融合
抑郁症
分类
脑网络
基于局部差异最小生成树脑网络的抑郁症分类研究
局部差异网络
最小生成树
抑郁症
脑网络
机器学习
分类
基于H/A/α-Wishart分类的极化SAR图像船只检测
极化合成孔径雷达
船只检测
目标分解
非监督分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于邻域最小生成树的半监督极化SAR图像分类方法
来源期刊 雷达学报 学科 工学
关键词 极化SAR图像 地物分类 半监督 最小生成树
年,卷(期) 2019,(4) 所属期刊栏目 SAR图像智能解译专题
研究方向 页码范围 458-470
页数 13页 分类号 TN958
字数 6057字 语种 中文
DOI 10.12000/JR18104
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 滑文强 西安邮电大学计算机学院 3 2 1.0 1.0
5 王爽 3 32 2.0 3.0
6 郭岩河 1 2 1.0 1.0
7 谢雯 西安邮电大学计算机学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (18)
节点文献
引证文献  (2)
同被引文献  (5)
二级引证文献  (0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
极化SAR图像
地物分类
半监督
最小生成树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
雷达学报
双月刊
2095-283X
10-1030/TN
大16开
北京市海淀区北四环西路19号
2012
chi
出版文献量(篇)
766
总下载数(次)
3
总被引数(次)
4241
论文1v1指导