L-glutamic acid (glutamate-Glu) serves as one form with very strong stimulatory neurotransmitter (near aspartic, kainic, alpha-amino-3-hydroxy-5-me- thyl-4-izoxazole propionic acid (AMPA), chinolic and L-homocysteinic acid, glycine and D-serine) at the majority of neural excitatory synapse in the mammals and nonmammals central, sympathetic nervous system (CNS and SNS, respectively) and in different peripheral tissues and organ. It mediates interactions via stimulation a variety ionotropic N-methyl-D-As- partate (NMDA), AMPA and kainate receptors (ligand gated calcium channels) and III groups of the metabotropic glutamate receptors (mGluR1-8) family members (G-protein coupled receptors). It is good known different neuromodula-tion/interaction between Glu and norepinephrine (NE), dopamine (DA), gamma-amino-butyric acid (GABA), oxytocin/vasopressin (Oxy/AVP) and steroid receptors during stress in the central nervous system. In this review we describe the molecular structure of these glutamatergic receptors and discuss they neuropharmacology and clinical use probability of their antagonist, in stress particularly. On the other hand it was interesting if Glu can increase catecholamine (CA) release from motivational structures as stressoric factor in hypothalamo-pituitary adrenal axis (HPA) in the stress inducing processes. Our findings show that Glu more influences the brain’s motivational structure, which may indicate its contribution to the stress response by direct modulating the amount of catecholamine released.