基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
睡眠是人体必不可少的一项生理活动。通常,专家将病人整夜的脑电EEG数据以30秒为一帧进行睡眠状态分期并据此进行睡眠状态的分析与评估。然而,依靠人工标记睡眠数据需要消耗大量的精力。另一方面,专家的主观判断也会对分期结果带来误差。所以睡眠的自动分期就变得很重要,本文将介绍近年来的睡眠分期方法,分别是基于统计规则分期方法与基于深度学习技术的分期方法。在统计的分期方法中,介绍了三个重要的过程,预处理、特征提取以及分类器的选择。在基于深度学习的分期方法中,介绍了多层神经网络、卷积神经网络、长短时记忆神经网络以及不同网络组合的神经网络。最后我们对睡眠分期的研究进行了讨论, 认为深度神经网络将是未来睡眠分期研究主要方法。
推荐文章
基于能量特征和模糊熵的睡眠自动分期
睡眠自动分期
脑电
能量特征
模糊熵
支持向量机
基于蚁群优选的半监督主动协同睡眠分期方法研究
脑电信号
睡眠分期
蚁群算法
半监督学习
基于神经网络集成的睡眠脑电分期研究
睡眠脑电(EEG)
BP神经网络
AR参数
Bagging算法
集成
人脸自动识别方法综述
人脸自动识别
人脸检测
人脸定位
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 睡眠自动分期方法综述
来源期刊 生物物理学 学科 医学
关键词 睡眠自动分期 睡眠脑电 深度学习
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 34-48
页数 15页 分类号 R74
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
睡眠自动分期
睡眠脑电
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物物理学
季刊
2330-1686
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
48
总下载数(次)
51
总被引数(次)
0
论文1v1指导