基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
否定表达作为自然语言文本中常见的语言现象,对自然语言处理上层应用,如情感分析、信息抽取等,具有十分重要的意义.否定聚焦点识别任务是更细粒度的否定语义分析,其旨在识别出句子中被否定词修饰和强调的文本片段.该文将该任务作为序列标注问题,提出了一种基于双向长短期记忆网络结合条件随机场(BiLSTM-CRF)的否定聚焦点识别模型,其中,BiLSTM网络能够充分利用上下文信息并抓取全局特征,CRF层能够有效学习输出标签之间的前后依赖关系.在*SEM2012评测任务数据集上的实验结果表明,基于BiLSTM-CRF的否定聚焦点识别方法的准确率(accuracy)达到69.58%,与目前最好的系统相比,性能提升了2.44%.
推荐文章
基于ResNet和双向LSTM融合的物联网入侵检测分类模型构建与优化研究
入侵检测
残差网络
双向LSTM网络
图像分类
物联网
基于三维卷积与双向LSTM的行为识别研究
行为识别
三维卷积
双向LSTM
双中心loss
联合训练
计算机视觉
基于BI_LSTM_CRF神经网络的序列标注中文分词方法
自然语言处理
中文分词
神经网络
双向长短时记忆条件随机场
字嵌入
序列标注
基于AdaBoost-LSTM模型的语音情绪识别研究
语音识别
情绪识别
Adaboost-LSTM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双向LSTM与CRF融合模型的否定聚焦点识别
来源期刊 中文信息学报 学科 工学
关键词 否定聚焦点 BiLSTM-CRF模型 序列标注
年,卷(期) 2019,(1) 所属期刊栏目 语言分析与计算
研究方向 页码范围 25-34
页数 10页 分类号 TP391
字数 7898字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱巧明 苏州大学计算机科学与技术学院 261 2058 25.0 31.0
2 周国栋 苏州大学计算机科学与技术学院 138 1425 22.0 32.0
3 叶静 苏州大学计算机科学与技术学院 7 3 1.0 1.0
4 邹博伟 苏州大学计算机科学与技术学院 7 24 2.0 4.0
5 沈龙骧 苏州大学计算机科学与技术学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (2)
同被引文献  (3)
二级引证文献  (0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
否定聚焦点
BiLSTM-CRF模型
序列标注
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导