基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决零样本图像识别中传统模型容易出现投影域移位问题以及提高距离相似度度量的鲁棒性,提出关系网络改进语义自编码器的零样本识别算法.基于语义自编码器构建图像视觉特征和语义向量之间的特征映射,并将重构向量与对应向量真值进行级联后送入神经网络,最终利用输出的标量给出预测类别.实验表明,相比传统距离度量方法,文中算法在AWA、CUB和ImageNet-2数据集上的识别率均有所提高,在某些数据集上语义-视觉的投影效果优于反向投影.
推荐文章
深度稀疏自编码网络融合多LBP特征用于单样本人脸识别
稀疏自编码
单样本人脸识别
空-频特征
多特征融合
二维离散小波变换
数据库
直推式遥感图像场景零样本分类算法
遥感场景分类
直推式零样本分类
Sammon嵌入
谱聚类
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于虚拟样本图像集的多流形鉴别学习算法
单样本人脸识别
虚拟样本
通用训练样本集
多流形鉴别学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 语义自编码结合关系网络的零样本图像识别算法
来源期刊 模式识别与人工智能 学科 工学
关键词 语义自编码器 关系网络 零样本识别 语义向量 投影域移位
年,卷(期) 2019,(3) 所属期刊栏目 论文与报告
研究方向 页码范围 214-224
页数 11页 分类号 TP391.4
字数 7967字 语种 中文
DOI 10.16451/j.cnki.issn1003-6059.201903003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林克正 哈尔滨理工大学计算机科学与技术学院 72 430 10.0 16.0
2 李骜 哈尔滨理工大学计算机科学与技术学院 12 10 2.0 2.0
3 李昊天 哈尔滨理工大学计算机科学与技术学院 4 4 1.0 1.0
4 白婧轩 哈尔滨理工大学计算机科学与技术学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (7)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(8)
  • 参考文献(2)
  • 二级参考文献(6)
2015(4)
  • 参考文献(1)
  • 二级参考文献(3)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语义自编码器
关系网络
零样本识别
语义向量
投影域移位
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
模式识别与人工智能
月刊
1003-6059
34-1089/TP
16开
中国科学院合肥智能机械研究所安徽合肥董铺岛合肥1130信箱
26-69
1989
chi
出版文献量(篇)
2928
总下载数(次)
8
总被引数(次)
30919
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导