针对锂电池健康状态(State of Healthy,SOH)预测精度低的特点,利用遗传算法改进的极限学习机(Extreme Learning Machine,ELM)算法可提高锂电池SOH的预测精度.ELM输入层到隐含层的权值及隐含层单元的阈值随机产生,ELM算法只需设置隐含层单元的数目及隐含层激活函数类型.相比传统BP算法,ELM算法具有学习速率快、泛化性能好等优点.但由于ELM网络输入层到隐含层的权值和隐含层阈值产生的随机性,ELM算法的稳定性较差.ELM算法中引入遗传算法(GA)优化输入层到隐含层的权值和隐含层单元的阈值,该方法可增强ELM算法的稳定性.实验对比了GA-ELM算法与ELM算法、BP算法、RBF算法及SVR算法对锂电池SOH的预测,结果显示GA-ELM算法相比其他算法在预测精度和算法稳定性上均有提升.