作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高工作面瓦斯涌出量预测的效率和准确率,提出了一种将遗传算法(GA)与极限学习机(ELM)相结合的瓦斯涌出量预测的新方法.为了避免ELM受输入权值矩阵和隐含层偏差随机性的影响,算法采用GA对ELM的输入权值矩阵和隐含层偏差进行优化,建立GA-ELM瓦斯涌出量预测模型.利用某矿瓦斯涌出量相关数据对该模型进行了实例分析,将ELM、SVM和BP算法预测结果与该模型进行了对比分析.结果表明:GA-ELM模型具有较高的预测精度,可以相对准确、高效地对工作面的瓦斯涌出量进行预测.
推荐文章
基于LSSVM与CPSO的瓦斯涌出量组合预测
瓦斯涌出量
非线性组合预测
最小二乘支持向量机,经典粒子群算法
综采工作面的瓦斯涌出规律及涌出量的预测
综采工作面
瓦斯源
瓦斯预测
瓦斯涌出
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
基于MPSO-RBF的瓦斯涌出量预测研究
RBF神经网络
改进的PSO算法
瓦斯预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-ELM的瓦斯涌出量预测
来源期刊 煤矿安全 学科 工学
关键词 瓦斯涌出量 遗传算法 极限学习机 仿真预测 模型
年,卷(期) 2015,(4) 所属期刊栏目 分析·探讨
研究方向 页码范围 166-169
页数 分类号 TD712+.5
字数 语种 中文
DOI 10.13347/j.cnki.mkaq.2015.04.049
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩义波 南阳理工学院软件学院 17 28 4.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (149)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (50)
二级引证文献  (13)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(3)
  • 参考文献(2)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(5)
  • 引证文献(1)
  • 二级引证文献(4)
研究主题发展历程
节点文献
瓦斯涌出量
遗传算法
极限学习机
仿真预测
模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿安全
月刊
1003-496X
21-1232/TD
大16开
辽宁省抚顺市经济开发区滨河路11号
1970
chi
出版文献量(篇)
12289
总下载数(次)
22
总被引数(次)
57391
论文1v1指导