作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为有效挖掘瓦斯涌出量监测数据隐含特征,预防瓦斯动力灾害,基于希尔伯特-黄变换(HHT)方法、布谷鸟搜索算法(CS)和极限学习机(ELM)基本理论,构建了瓦斯涌出量的HHT-CS-ELM动态预测模型.通过EMD将样本序列分解成多个不同频率的本征模态函数(IMF)分量;利用Hilbert变换获取各分量的瞬时频率,并据此将IMF分量划分成较高频和低频,采用不同的预测模型进行预测,经叠加各预测值得到最终预测结果.以汾西矿业集团某矿瓦斯涌出量监测数据为例进行仿真实验,结果表明:HHT方法能有效降低数据复杂度,其最小相对误差为0.144%,最大相对误差为0.388%,平均相对误差为0.281%,具有较高的预测精度和泛化能力;更好地适用于非平稳时间序列预测.
推荐文章
基于LSSVM与CPSO的瓦斯涌出量组合预测
瓦斯涌出量
非线性组合预测
最小二乘支持向量机,经典粒子群算法
综采工作面的瓦斯涌出规律及涌出量的预测
综采工作面
瓦斯源
瓦斯预测
瓦斯涌出
基于径向基的瓦斯涌出量灰色预测模型
瓦斯涌出量
灰色预测
RBF
预测精度
基于MPSO-RBF的瓦斯涌出量预测研究
RBF神经网络
改进的PSO算法
瓦斯预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于HHT-CS-ELM的瓦斯涌出量时序预测
来源期刊 煤矿安全 学科 工学
关键词 绝对瓦斯涌出量 Hilbert变换 布谷鸟搜索算法 极限学习机 时序预测
年,卷(期) 2017,(9) 所属期刊栏目 试验·研究
研究方向 页码范围 5-8
页数 4页 分类号 TD713
字数 2602字 语种 中文
DOI 10.13347/j.cnki.mkaq.2017.09.002
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (150)
共引文献  (424)
参考文献  (15)
节点文献
引证文献  (2)
同被引文献  (25)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(9)
  • 参考文献(0)
  • 二级参考文献(9)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(8)
  • 参考文献(0)
  • 二级参考文献(8)
2006(17)
  • 参考文献(0)
  • 二级参考文献(17)
2007(13)
  • 参考文献(0)
  • 二级参考文献(13)
2008(16)
  • 参考文献(0)
  • 二级参考文献(16)
2009(12)
  • 参考文献(0)
  • 二级参考文献(12)
2010(13)
  • 参考文献(0)
  • 二级参考文献(13)
2011(13)
  • 参考文献(3)
  • 二级参考文献(10)
2012(11)
  • 参考文献(2)
  • 二级参考文献(9)
2013(26)
  • 参考文献(5)
  • 二级参考文献(21)
2014(7)
  • 参考文献(3)
  • 二级参考文献(4)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
绝对瓦斯涌出量
Hilbert变换
布谷鸟搜索算法
极限学习机
时序预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿安全
月刊
1003-496X
21-1232/TD
大16开
辽宁省抚顺市经济开发区滨河路11号
1970
chi
出版文献量(篇)
12289
总下载数(次)
22
总被引数(次)
57391
论文1v1指导