基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种利用K-近邻算法优选格网数字高程模型插值方法,通过构建最优插值方法的地表样本数据库,提取地形点云数据的特征信息与地表样本数据库中的地表样本进行匹配,从而获得合适的插值方法.给出了方法实现的基本原理和流程,选用RIGEL VZ-1000扫描的点云数据进行实验,证明了方法的可行性.
推荐文章
一种自适应k-最近邻算法的研究
模式分类
k-最近邻算法
超球
BP网络算法
一种新的组合k-近邻预测方法
近邻算法
预测模型
Boosting理论
组合方法
一种基于角相似性的k-最近邻搜索算法
k-最近邻搜索
数据分割
角相似性
壳-超圆锥体
基于K-近邻树的离群检测算法
离群检测
离群簇
最小生成树
不相似性
K-近邻
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种应用K-近邻算法优选点云数据生成格网DEM插值的方法
来源期刊 测绘地理信息 学科 地球科学
关键词 点云数据 格网数字高程模型 K-近邻算法 插值方法 特征提取
年,卷(期) 2019,(6) 所属期刊栏目 技术研究
研究方向 页码范围 27-30
页数 4页 分类号 P208|P232
字数 语种 中文
DOI 10.14188/j.2095-6045.2017488
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 花向红 武汉大学测绘学院 231 1923 21.0 30.0
5 续东 武汉大学测绘学院 2 0 0.0 0.0
9 王彬 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (47)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
点云数据
格网数字高程模型
K-近邻算法
插值方法
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘地理信息
双月刊
2095-6045
42-1840/P
大16开
武汉市珞珈山武汉大学出版大楼
1976
chi
出版文献量(篇)
3184
总下载数(次)
13
总被引数(次)
18953
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导