基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
外卖行业蓬勃发展,人们对于外卖服务质量的要求也不断提升。因外卖员接单区域基本固定,合理划分外卖员负责区域并分配每个区域外卖员人数成为提升效率的关键。本项目基于查询算法模型,分析上海市2017年某时段的外卖数据,试图得到一个对于外卖接单区域的较为合理的划分标准并给出该划分。K-Means是一种常见的划分聚类算法,是在集中式系统框架无法对海量数据进行处理分析的基础上提出的。然而对于有权重的二维点集无法使用K-Means聚类算法,因此研究一种改进的Weighted K-Means算法显得尤为必要。本项目定义带权质心和带权距离,提出了新的Weighted K-Means算法,并使用改进前后的两种方法处理上海市外卖接单信息,给出合理可行的外卖员接单区域划分。对比两种方法的结果,改进的Weighted K-Means不仅方法可行,区域划分表现也更优秀。与此同时,使用该方法对外卖接单区域进行新的划分,有助于优化现有外卖模式、提升外卖效率以及顾客满意度。
推荐文章
基于划分的数据挖掘K-means聚类算法分析
数据挖掘
聚类分析
K-means聚类算法
聚类中心选取
K-means算法改进
初始中心点
基于改进BA算法的K-means聚类
蝙蝠算法
莱维飞行
惯性权重
limit阈值
K-means算法
基于Kd树改进的高效K-means聚类算法
k-means算法
簇心
kd树
剪枝策略
CK-means算法
K-means聚类算法的研究
数据挖掘
K-means算法
初始聚类中心
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的Weighted K-Means聚类的外卖员接单区域划分问题研究
来源期刊 统计学与应用 学科 工学
关键词 聚类算法 K-MEANS算法 WEIGHTED K-MEANS算法 PYTHON
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 203-217
页数 15页 分类号 TP39
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 马云卿 3 0 0.0 0.0
2 张传鑫 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类算法
K-MEANS算法
WEIGHTED
K-MEANS算法
PYTHON
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学与应用
双月刊
2325-2251
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
512
总下载数(次)
3
总被引数(次)
0
论文1v1指导