基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的生物医学命名实体识别方法需要大量的标注数据样本,但是在实际应用中标注样本代价高昂.为降低生物医学命名实体识别对标注样本的需求,本文提出通过使用PU学习中的两步法方法,将生物医学命名实体识别问题转化为PU场景下的命名实体识别问题.在第一步中分别使用1-DNF、Spy、NB和Rocchio算法在未标注数据中抽取强负例,然后在已有的正例数据和强负例数据的基础上构建隐马尔可夫模型,最后对待分类数据进行命名实体识别.在GENIA语料库上的实验结果显示,在标注数据较少的情况下,通过使用PU学习方法的两步法构建分类模型,其性能显著优于直接使用标注数据构建的分类模型,同时降低了人工标注数据的成本.
推荐文章
BioTrHMM:基于迁移学习的生物医学命名实体识别算法
迁移学习
隐马尔可夫模型
命名实体识别
文本挖掘
生物医学命名实体识别的研究与进展
命名实体识别
文本挖掘
特征选择
机器学习
临床医学命名实体识别的病历质量筛选标准研究
电子病历
临床医学命名实体
病历质量
筛选标准
BioTrHMM:基于迁移学习的生物医学命名实体识别算法
迁移学习
隐马尔可夫模型
命名实体识别
文本挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PU场景下的生物医学命名实体识别算法研究
来源期刊 智能物联技术 学科 工学
关键词 正例未标注学习 隐马尔科夫模型 命名实体识别 文本挖掘
年,卷(期) 2019,(1) 所属期刊栏目 基础研究
研究方向 页码范围 22-28,47
页数 8页 分类号 TP391.1
字数 5396字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘斌 西北农林科技大学信息工程学院 50 217 8.0 12.0
2 高冰涛 中国电子科技集团公司第三十六研究所 1 1 1.0 1.0
6 翟振刚 中国电子科技集团公司第三十六研究所 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (5)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(3)
  • 二级参考文献(4)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(2)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
正例未标注学习
隐马尔科夫模型
命名实体识别
文本挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能物联技术
双月刊
1671-7457
33-1411/TP
大16开
杭州市西湖区马塍路36号
1977
chi
出版文献量(篇)
2506
总下载数(次)
0
总被引数(次)
629
论文1v1指导