将图像融合运用于检测与跟踪领域需要融合图像显示清晰的目标,传统的优化类融合算法存在目标信息不完整的问题,对此本文提出一种基于改进灰狼优化(Gray Wolf Optimization,GWO)结合边缘特征的图像融合方法.将图像分解为细节层与粗糙层后,对细节图像使用优化权重进行融合,再融合细节层与粗糙层,最后执行对比度有限自适应直方图均衡增强融合图像.其中优化权重通过改进的灰狼优化获得,通过融合边缘信息获得权重取值范围,并且对灰狼优化引入交叉操作改进优化效果.实验对比图像全局与目标局部的标准差、信息熵、平均梯度、空间频率,本文方法的性能在目标局部熵、标准差上大大优于其他方法,在全局指标上也有很好的表现.