摘要:
Statistics of languages are usually calculated by counting characters, words, sentences, word rankings. Some of these random variables are also the main “ingredients” of classical readability formulae. Revisiting the readability formula of Italian, known as GULPEASE, shows that of the two terms that determine the readability index G—the semantic index , proportional to the number of characters per word, and the syntactic index GF, proportional to the reciprocal of the number of words per sentence—GF is dominant because GC is, in practice, constant for any author throughout seven centuries of Italian Literature. Each author can modulate the length of sentences more freely than he can do with the length of words, and in different ways from author to author. For any author, any couple of text variables can be modelled by a linear relationship y = mx, but with different slope m from author to author, except for the relationship between characters and words, which is unique for all. The most important relationship found in the paper is that between the short-term memory capacity, described by Miller’s “7 ? 2 law” (i.e., the number of “chunks” that an average person can hold in the short-term memory ranges from 5 to 9), and the word interval, a new random variable defined as the average number of words between two successive punctuation marks. The word interval can be converted into a time interval through the average reading speed. The word interval spreads in the same range as Miller’s law, and the time interval is spread in the same range of short-term memory response times. The connection between the word interval (and time interval) and short-term memory appears, at least empirically, justified and natural, however, to be further investigated. Technical and scientific writings (papers, essays, etc.) ask more to their readers because words are on the average longer, the readability index G is lower, word and time intervals are longer. Future work done on ancient languages, such as the classical