基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
花卉图像类内差异性大和类间相似性高使得花卉图像分类较难.传统花卉分类方法和普通卷积神经网络很难完整地表达花卉图像的特征,故而分类效果不理想.为提高花卉分类准确率,提出改进的InceptionV3网络用于花卉图片的分类.采用迁移学习的方法,将在大规模数据集上训练的InceptionV3网络用于花卉图像数据集的分类,对其中的激活函数进行改进.在通用Oxford flower-102数据集上的实验表明:该模型在花类图像分类任务中比传统方法和普通卷积神经网络分类准确率高,且比未改进的卷积神经网络准确率高,迁移过程准确率达到81.32%,微调过程准确率达到92.85%.
推荐文章
一种改进的BP神经网络调制分类器
调制类型识别
特征参数
分层结构组合分类器
神经网络
基于卷积神经网络和迁移学习的花卉图像分类
花卉分类
深度学习
卷积神经网络
迁移学习
深度特征
数据增强
一种改进的基于神经网络的文本分类算法
文本分类
神经网络
K最近邻
特征选择
图像制导中的一种改进增量学习RBF神经网络
径向基函数神经网络
自动目标识别
隐层神经元价值函数
IL-RAN
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进的深度神经网络的花卉图像分类
来源期刊 河南大学学报(自然科学版) 学科 工学
关键词 迁移学习 InceptionV3网络结构 深度神经网络 Tanh-ReLU激活函数 数据增强 图像分类
年,卷(期) 2019,(2) 所属期刊栏目 自动化基础理论与信息技术
研究方向 页码范围 192-203
页数 12页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (19)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(7)
  • 参考文献(1)
  • 二级参考文献(6)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
InceptionV3网络结构
深度神经网络
Tanh-ReLU激活函数
数据增强
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南大学学报(自然科学版)
双月刊
1003-4978
41-1100/N
大16开
河南省开封市明伦街85号
36-27
1934
chi
出版文献量(篇)
2535
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导