基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的花卉图像分类都是基于人工手动选择单一特征或者多特征融合再分类,这种方法普遍存在精度低、成本高、泛化能力弱等缺陷.针对目前深度学习在细粒度图像分类中的应用,提出一种基于残差网络、实现端到端的花卉图像分类方法.首先以ResNet18为基础模型;其次将全卷积结构的思想应用于网络模型中,将ResNet18的全连接层替换成卷积层以优化网络模型;最后在优化后的ResNet18中融入混合域注意力机制,由Softmax层进行分类.本文选取了Oxford17flowers和Oxford102flowers两个花卉图像数据集做对比试验,与前人的花卉图像分类方法对比,本文的方法取得了理想的效果,在Oxford17和Oxford102上分别取得了99.26%以及99.02%的正确率.提出了一种基于注意力的残差结构改进方法,相较于前人的花卉图像分类方法,该方法能够更有效地提取关键信息的特征,抑制干扰区域的信息,对花卉图像分类具有显著性效果,适用于细粒度图像分类.
推荐文章
基于显著图的花卉图像分类算法研究
显著图
特征提取
特征融合
图像分类
基于深度残差网络ResNet的废料瓶分类系统
废料瓶分类
Opencv
深度学习
ResNet18
基于改进的深度残差网络的表情识别研究
深度学习
残差网络
表情识别
迁移学习
支持向量机
基于三维残差网络和虚拟样本的高光谱图像分类方法研究
高光谱图像
图像分类
深度学习
参数优化
三维残差网络
实验验证
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进残差网络的花卉图像分类算法
来源期刊 电子器件 学科 工学
关键词 图像分类 花卉识别 残差网络 全卷积结构 注意力机制
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 698-704
页数 7页 分类号 TP391.4
字数 4469字 语种 中文
DOI 10.3969/j.issn.1005-9490.2020.03.041
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 裴晓芳 南京信息工程大学滨江学院 14 46 4.0 6.0
5 张杨 南京信息工程大学电子与信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (39)
共引文献  (244)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(10)
  • 参考文献(2)
  • 二级参考文献(8)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
花卉识别
残差网络
全卷积结构
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子器件
双月刊
1005-9490
32-1416/TN
大16开
南京市四牌楼2号
1978
chi
出版文献量(篇)
5460
总下载数(次)
21
总被引数(次)
27643
论文1v1指导