钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
科教文艺期刊
\
教育期刊
\
北京信息科技大学学报(自然科学版)期刊
\
企业关联交易图的离群点挖掘研究
企业关联交易图的离群点挖掘研究
作者:
赵晓永
赵熙岑
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
关联交易
图数据
密度峰值
离群挖掘
摘要:
发现异常的企业关联交易是审计的重要任务之一.但目前企业之间的关联交易构成了复杂的交易图,传统审计方法在如此繁杂的数据中发现异常的难度越来越大.对企业关联交易图的离群点挖掘进行了研究,分析了关联交易图数据的特点,根据这些特点对rPCA、CMGOS和One-class SVM三种离群点挖掘算法进行了对比,并提出了一种采用密度峰值聚类DPC来改进的CMGOS算法.实验表明,One-class SVM算法作为一种数据新颖性检测方法,不适于异常企业关联交易挖掘场景;而企业关联交易数据的节点属性对依赖性的影响,rPCA算法与CMGOS算法较适合于企业关联交易图离群挖掘,改进后的CMGOS算法检测离群点的效果得到了较好的提升.
暂无资源
收藏
引用
分享
推荐文章
离群点挖掘研究
离群点
数据挖掘
局部离群点
高维数据
数据流
基于全息熵的空间离群点挖掘算法研究
全息熵
R*-树
空间离群点
离群点检测
混合属性
离群点挖掘研究
离群点
数据挖掘
局部离群点
高维数据
数据流
基于属性权重的局部离群点挖掘算法研究
高维
离群点检测
高维局部偏离系数
加权属性距离
高维平均偏离系数
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
企业关联交易图的离群点挖掘研究
来源期刊
北京信息科技大学学报(自然科学版)
学科
工学
关键词
关联交易
图数据
密度峰值
离群挖掘
年,卷(期)
2019,(2)
所属期刊栏目
研究方向
页码范围
9-13
页数
5页
分类号
TP314
字数
2333字
语种
中文
DOI
10.16508/j.cnki.11-5866/n.2019.02.003
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
赵晓永
北京信息科技大学信息管理学院
18
14
2.0
3.0
2
赵熙岑
北京信息科技大学信息管理学院
2
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(24)
共引文献
(126)
参考文献
(10)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1996(1)
参考文献(0)
二级参考文献(1)
1999(1)
参考文献(0)
二级参考文献(1)
2002(1)
参考文献(0)
二级参考文献(1)
2004(1)
参考文献(0)
二级参考文献(1)
2005(2)
参考文献(0)
二级参考文献(2)
2006(1)
参考文献(0)
二级参考文献(1)
2007(3)
参考文献(1)
二级参考文献(2)
2008(4)
参考文献(0)
二级参考文献(4)
2010(2)
参考文献(1)
二级参考文献(1)
2011(1)
参考文献(0)
二级参考文献(1)
2012(2)
参考文献(1)
二级参考文献(1)
2014(9)
参考文献(2)
二级参考文献(7)
2015(4)
参考文献(3)
二级参考文献(1)
2016(2)
参考文献(2)
二级参考文献(0)
2019(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
关联交易
图数据
密度峰值
离群挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京信息科技大学学报(自然科学版)
主办单位:
北京信息科技大学
出版周期:
双月刊
ISSN:
1674-6864
CN:
11-5866/N
开本:
大16开
出版地:
北京市
邮发代号:
创刊时间:
1986
语种:
chi
出版文献量(篇)
2043
总下载数(次)
10
总被引数(次)
11074
期刊文献
相关文献
1.
离群点挖掘研究
2.
基于全息熵的空间离群点挖掘算法研究
3.
离群点挖掘研究
4.
基于属性权重的局部离群点挖掘算法研究
5.
数据密集型计算环境下的离群点挖掘算法
6.
一种基于Z曲线的新离群点挖掘算法
7.
基于KNN图的空间离群点挖掘算法
8.
基于频繁模式的离群点挖掘在入侵检测中的应用
9.
离群数据挖掘综述
10.
基于SOM的离群数据挖掘集成框架研究
11.
基于遗传模拟退火算法的高维离群点挖掘
12.
基于聚类的离群点分析方法
13.
基于幂图的离群子空间搜索算法
14.
基于后缀树的知识点间关联规则挖掘算法
15.
基于密度的局部离群数据挖掘方法的改进
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
中学生教育
体育
图书情报档案
大学学报
少儿教育
教育
文化
文学
新闻出版
科研管理
艺术
语言文字
北京信息科技大学学报(自然科学版)2022
北京信息科技大学学报(自然科学版)2021
北京信息科技大学学报(自然科学版)2020
北京信息科技大学学报(自然科学版)2019
北京信息科技大学学报(自然科学版)2018
北京信息科技大学学报(自然科学版)2017
北京信息科技大学学报(自然科学版)2016
北京信息科技大学学报(自然科学版)2015
北京信息科技大学学报(自然科学版)2014
北京信息科技大学学报(自然科学版)2013
北京信息科技大学学报(自然科学版)2012
北京信息科技大学学报(自然科学版)2011
北京信息科技大学学报(自然科学版)2010
北京信息科技大学学报(自然科学版)2009
北京信息科技大学学报(自然科学版)2008
北京信息科技大学学报(自然科学版)2007
北京信息科技大学学报(自然科学版)2006
北京信息科技大学学报(自然科学版)2005
北京信息科技大学学报(自然科学版)2004
北京信息科技大学学报(自然科学版)2003
北京信息科技大学学报(自然科学版)2002
北京信息科技大学学报(自然科学版)2001
北京信息科技大学学报(自然科学版)2000
北京信息科技大学学报(自然科学版)1999
北京信息科技大学学报(自然科学版)1998
北京信息科技大学学报(自然科学版)2019年第6期
北京信息科技大学学报(自然科学版)2019年第5期
北京信息科技大学学报(自然科学版)2019年第4期
北京信息科技大学学报(自然科学版)2019年第3期
北京信息科技大学学报(自然科学版)2019年第2期
北京信息科技大学学报(自然科学版)2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号