基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统计算机神经网络存在梯度弥散、 局部最小值、 非线性时间序列长期预测性能不佳和高维序列数据复杂度高等问题,提出时序深度置信网络模型(timing deep belief network model,T-DBN).该模型预训练阶段采用改进的贪婪预训练算法,在预训练过程中使用梯度修正并行回火(gradient fixing parallel tempering,GFPT)算法,采用重构误差确定网络深度,在反向调整阶段采用拟牛顿法(BFGS算法),以获得更加准确的预测精度.结合相空间重构理论和BP(back propagation)神经网络,对中国江西省2016—2020年农业机械总动力进行了预测.针对高非线性的股票数据,提取同花顺软件1990-12-20—2018-03-30时间段内的上证指数特征信息,分别采用T-DBN、DBN和长短期记忆(long short-term memory,LSTM)模型进行股票预测,预测准确率分别为79.3%、77.9%和74.6%,T-DBN模型的预测准确率高于DBN和LSTM模型.
推荐文章
基于神经网络的混沌时间序列预测
人工神经网络
混沌时间序列
Lyapunov指数
基于时间序列深度学习的超窄间隙焊接质量预测方法
超窄间隙
时序数据
卷积网络
质量预测
基于深度置信网络的滴流床反应器持液量预测
滴流床反应器
持液量
机器学习
深度置信网络
一种改进的深度置信网络在交通流预测中的应用
交通流预测
深度置信网络
连续受限玻尔兹曼机
自适应学习步长
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度置信网络的时间序列预测
来源期刊 深圳大学学报(理工版) 学科 工学
关键词 计算机神经网络 时间序列预测 深度神经网络 深度置信网络 农机总动力 预测模型 股票预测
年,卷(期) 2019,(6) 所属期刊栏目 电子与信息科学
研究方向 页码范围 718-724
页数 7页 分类号 TP391
字数 6417字 语种 中文
DOI 10.3724/SP.J.1249.2019.06718
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨珺 江西农业大学软件学院 43 143 8.0 10.0
2 佘佳丽 南昌工学院电气与信息工程学院 1 1 1.0 1.0
3 刘艳珍 江西农业大学软件学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (123)
共引文献  (214)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(9)
  • 参考文献(0)
  • 二级参考文献(9)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(10)
  • 参考文献(0)
  • 二级参考文献(10)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(9)
  • 参考文献(2)
  • 二级参考文献(7)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(12)
  • 参考文献(4)
  • 二级参考文献(8)
2016(9)
  • 参考文献(3)
  • 二级参考文献(6)
2017(5)
  • 参考文献(2)
  • 二级参考文献(3)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机神经网络
时间序列预测
深度神经网络
深度置信网络
农机总动力
预测模型
股票预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
深圳大学学报(理工版)
双月刊
1000-2618
44-1401/N
大16开
深圳市南山区深圳大学行政楼419室
46-206
1984
chi
出版文献量(篇)
1946
总下载数(次)
10
总被引数(次)
10984
论文1v1指导