原文服务方: 河南科学       
摘要:
由于GDP时间序列具有线性和非线性的特征,神经网络(NN)方法和集成预测方法等在预测分析时可能产生较大误差.以GDP的年增长率作为神经网络的输入,建立基于BPNN的GDP预测模型.利用此改进BPNN模型对我国的GDP进行预测和验证,并分别与ARIMA-BP集成模型及BPNN模型进行比较.结果表明,改进的BPNN模型预测准确率明显优于目前的ARIMA-BP集成模型及BPNN模型的预测准确率,能有效应用于GDP预测.
推荐文章
基于改进BP神经网络的混沌时间序列预测方法对比
混沌时间序列
BP神经网络
遗传算法
粒子群算法
基于神经网络的混沌时间序列预测
人工神经网络
混沌时间序列
Lyapunov指数
基于混沌时间序列和神经网络的网络流量预测方法
时间序列
相空间重构
神经网络
网络流量预测
基于聚类分析和神经网络的时间序列预测方法
聚类
时间序列
预测
径向基
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进神经网络的GDP时间序列预测
来源期刊 河南科学 学科
关键词 BP神经网络 GDP预测 准确率
年,卷(期) 2011,(12) 所属期刊栏目
研究方向 页码范围 1506-1508
页数 分类号 F224.9
字数 语种 中文
DOI 10.3969/j.issn.1004-3918.2011.12.031
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁娜 33 127 6.0 10.0
2 张吉刚 32 137 7.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (66)
参考文献  (5)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (4)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
GDP预测
准确率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河南科学
月刊
1004-3918
41-1084/N
大16开
1982-01-01
chi
出版文献量(篇)
7317
总下载数(次)
0
总被引数(次)
26314
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导