基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有深度卷积嵌入聚类算法(deep convolutional embedded clustering,DCEC)的网络特征损失过大,对复杂图像没有提取有效特征的问题,提出一个具有17层网络结构的无监督深度聚类框架,并在编码层加入下采样层,减少参数和防止过拟合;在解码层加入上采样层还原下采样造成的细节损失.分别结合DEC (deep embedded clustering)算法的损失函数和IDEC(improved deep embedded clustering)算法的采用局部结构保留优势的损失函数,得到两种基于卷积自编码的深度学习图像聚类算法DEC_DCNN(deep embedded clustering based on deep convolutional neural network)和IDEC_DCNN(improved deep embedded clustering based on deep convolutional neural network),并使用自适应矩估计(adaptive moment estimation,Adam)和小批量随机梯度下降(mini-batch stochastic gradient decent,mini-batch SGD)两种优化方法调整模型参数.3个经典图像数据集的实验结果显示,提出的17层网络结构对图像特征具有很好的鲁棒性和通用性,基于该网络结构的深度聚类算法取得了远优于现有深度聚类算法的结果,其聚类准确率均优于对比算法;对深度聚类算法DEC_DCNN和IDEC_DCNN的聚类结果准确率、指标值AMI(adjusted mutual information)和ARI (adjusted rand index)进行比较,IDEC_DCNN比DEC_DCNN的聚类性能更好,说明IDEC_DCNN算法的性能更优越.
推荐文章
基于稀疏自编码特征聚类算法的图像窜改检测
稀疏自编码
K-means聚类算法
同图复制
块匹配
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
基于深度卷积自编码神经网络的手写数字识别研究
卷积自编码神经网络
双线性插值
手写数字识别
深度学习
基于自编码机和聚类的混合推荐算法
混合推荐
协同过滤
自编码机
聚类
平均绝对误差
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 深度卷积自编码图像聚类算法*
来源期刊 计算机科学与探索 学科 工学
关键词 深度图像聚类 卷积自编码 卷积神经网络(CNN) 深度学习 聚类
年,卷(期) 2019,(4) 所属期刊栏目 数据挖掘
研究方向 页码范围 586-595
页数 10页 分类号 TP181
字数 6203字 语种 中文
DOI 10.3778/j.issn.1673-9418.1806029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢娟英 陕西师范大学计算机科学学院 46 873 15.0 28.0
2 侯琦 陕西师范大学计算机科学学院 1 0 0.0 0.0
3 曹嘉文 陕西师范大学计算机科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度图像聚类
卷积自编码
卷积神经网络(CNN)
深度学习
聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导