基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对因受到尺度变化、光照变化、形状变化以及相似目标等因素的干扰,目标跟踪过程出现漂移或算法过拟合现象等问题,提出了一种基于因式分解卷积运算的多尺度卷积运算.采用含有类似anchors机制的深度检测模型SSD,提取不同宽高比尺寸的特征减少漂移情况的出现,利用紧凑的样本集生成模型和优秀的更新策略等优点有效地解决了过拟合问题.结合ECO算法中的因式分解法提高在光照变化、尺度变化、遮挡以及背景杂波等方面跟踪效果.实验结果表明:该目标跟踪算法具有较强的鲁棒性和较高的跟踪成功率.研究结论可以提高目标跟踪算法的精确性、实时性.
推荐文章
“四法”搞定因式分解
因式分解
四种方法
技巧
初中数学因式分解教学之管见
因式分解
教学方法
浅谈一元多项式在有理数范围内的因式分解
一元多项式
因式分解
数学方法
改进的卷积网络目标跟踪算法
目标跟踪
卷积网络
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 因式分解卷积运算的多尺度目标跟踪算法
来源期刊 辽宁工程技术大学学报(自然科学版) 学科 工学
关键词 目标跟踪 深度学习 相关滤波 多尺度 卷积神经网络 有效卷积算子
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 463-471
页数 9页 分类号 TP391
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 付兴武 61 373 11.0 17.0
2 姜文涛 23 127 6.0 10.0
3 杨哲 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (117)
共引文献  (54)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(14)
  • 参考文献(0)
  • 二级参考文献(14)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(13)
  • 参考文献(0)
  • 二级参考文献(13)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(6)
  • 参考文献(5)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
深度学习
相关滤波
多尺度
卷积神经网络
有效卷积算子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁工程技术大学学报(自然科学版)
月刊
1008-0562
21-1379/N
大16开
辽宁省阜新市
1979
chi
出版文献量(篇)
6319
总下载数(次)
12
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导