基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Advances in machine learning(ML)methods are important in industrial engineering and attract great attention in recent years.However,a comprehensive comparative study of the most advanced ML algorithms is lacking.Six integrated ML approaches for the crack repairing capacity of the bacteria-based self-healing concrete are proposed and compared.Six ML algorithms,including the Support Vector Regression(SVR),Decision Tree Regression(DTR),Gradient Boosting Regression(GBR),Artificial Neural Network(ANN),Bayesian Ridge Regression(BRR)and Kernel Ridge Regression(KRR),are adopted for the relationship modeling to predict crack closure percentage(CCP).Particle Swarm Optimization(PSO)is used for the hyper-parameters tuning.The importance of parameters is analyzed.It is demonstrated that integrated ML approaches have great potential to predict the CCP,and PSO is efficient in the hyperparameter tuning.This research provides useful information for the design of the bacteria-based self-healing concrete and can contribute to the design in the rest of industrial engineering.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
The contribution of bacteria to organic matter in coal-measure source rocks
Coal-measure source rocks
Organic matter type
Bacteria
Monomethyl alkanes
Alkyl cyclohexane
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 BACTERIA SELF-HEALING CONCRETE crack CLOSURE PERCENTAGE machine learning PREDICTION
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 57-77
页数 21页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BACTERIA
SELF-HEALING
CONCRETE
crack
CLOSURE
PERCENTAGE
machine
learning
PREDICTION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
论文1v1指导