基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
张量分解和深度学习已被应用于推荐系统,并取得了较好的效果.张量分解较好地从用户对推荐对象评分中提取用户、推荐对象以及其他影响因素的隐性的特征,将这些特征进行匹配,给出推荐策略,但这种方法忽略了用户、推荐对象以及其他影响因素现有辅助数据信息中的显性特征.深度学习是从辅助信息中提取用户、推荐对象以及其他影响因素的特征,并进行匹配给出推荐策略,却忽略了用户评分数据中用户、推荐对象以及其他影响因素的隐性特征.将张量分解和深度学习两种推荐方法相融合,提出一种基于张量分解和深度学习的混合推荐算法.使用张量分解算法和深度学习分别从三阶用户评分数据和多源异构辅助信息中提取用户特征和推荐对象特征,并将它们匹配得出用户对推荐对象的需求或喜爱的预测评分,再将两种算法的预测评分进行融合给出最终综合评分,从而提高个性化推荐的精准度.对比实验证明混合推荐算法与传统的协同过滤算法相比误差降低了34.0%.
推荐文章
基于ranking的深度张量分解群组推荐算法
推荐算法
群组
深度学习
张量分解
基于ranking的深度张量分解群组推荐算法
推荐算法
群组
深度学习
张量分解
基于多元关系的张量分解标签推荐方法
标签推荐
张量因子分解
权重
聚类
混合因子矩阵分解推荐算法
推荐算法
矩阵分解
混合因子
推荐解释
冷启动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于张量分解和深度学习的混合推荐算法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 混合推荐算法 张量分解 深度学习 辅助数据 评分数据
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 952-959
页数 8页 分类号 TP393
字数 5030字 语种 中文
DOI 10.13232/j.cnki.jnju.2019.06.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张家精 安徽建筑大学数理学院 13 74 4.0 8.0
2 倪友聪 福建师范大学数学与信息学院 26 56 4.0 6.0
3 陈金兰 安徽建筑大学机械与电气工程学院 7 12 2.0 3.0
4 夏巽鹏 安徽建筑大学电子与信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (110)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(1)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(10)
  • 参考文献(2)
  • 二级参考文献(8)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
混合推荐算法
张量分解
深度学习
辅助数据
评分数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导