作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Caffe是目前广泛应用于计算机视觉处理的深度学习框架之一,支持卷积神经网络的模型训练与预测.本文利用caffe支持的AlexNet卷积神经网络分别基于加载与不加载基础模型两种模式对五类动物图片进行分类学习与训练,发现加载基础模型的网络模型收敛耗时仅2.77 s,测试集准确率接近100%,实用测试准确率达到99%,且训练与测试损失曲线高度重合,但另一模式的网络模型收敛耗时多达68.89 s,测试集准确率仅为95%,实用测试准确率仅94%,且训练与测试损失曲线存在严重分化.图像分类不仅可以对不同物类的图像进行准确分类,同样可以对不同属性、状态或特性的图像进行准确分类.
推荐文章
基于改进AlexNet卷积神经网络的手掌静脉识别算法研究
手掌静脉识别
AlexNet神经网络优化
图像特征提取
图像预处理
注意力机制应用
有效性验证
基于改进型AlexNet的LPI雷达信号识别
LPI雷达信号
Choi-Williams分布
时频图像
图像处理
深度学习
AlexNet
基于AlexNet的视频异常检测技术
异常检测
AlexNet
一类支持向量机
迁移学习
卷积神经网络
基于神经网络的图像分类算法
分类算法
神经网络
图像处理
图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AlexNet网络的动物图片分类
来源期刊 贵州大学学报(自然科学版) 学科 工学
关键词 Caffe AlexNet网络 基础模型 图像分类
年,卷(期) 2019,(6) 所属期刊栏目 工程科学研究及应用
研究方向 页码范围 73-77
页数 5页 分类号 TP391.4
字数 3090字 语种 中文
DOI 10.15958/j.cnki.gdxbzrb.2019.06.15
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周德良 3 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (162)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(2)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Caffe
AlexNet网络
基础模型
图像分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
贵州大学学报(自然科学版)
双月刊
1000-5269
52-5002/N
16开
贵州省贵阳市花溪
1982
chi
出版文献量(篇)
3181
总下载数(次)
5
总被引数(次)
11240
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导