基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高短期电力负荷预测的准确度,提出了将密度聚类算法(DBSCAN)与自回归移动平均模型(ARIMA)相结合的方法,进行短期电力负荷预测.首先,对数据进行归一化、天气状况类别数据编码、缺失值填补等预处理;然后,利用DBSCAN对负荷均值进行聚类与剔除噪音点.ARIMA模型的参数根据差分后的时间序列及热力图确定;最后,重构分解后的曲线,并根据历史数据对未来短期负荷进行预测.实验结果表明,预测结果的误差在合理范围内.
推荐文章
基于模糊灰色聚类AMPSO-BP短期负荷预测
负荷预测
神经网络
模糊灰色聚类
自适应变异粒子群优化
电力短期负荷预测模型与软件开发
电力系统
短期负荷预测
人工神经网络
模糊逻辑
基于气象因素敏感模型的短期电力负荷预测
人工神经网络
短期电力负荷预测
天气敏感性模型
气象因素
短期电力负荷预测方法研究
电力系统
短期电力负荷
灰色预测方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度聚类与ARIMA模型短期电力负荷预测
来源期刊 北京信息科技大学学报(自然科学版) 学科 工学
关键词 DBSCAN ARIMA 短期电力负荷 预测
年,卷(期) 2019,(5) 所属期刊栏目
研究方向 页码范围 84-87
页数 4页 分类号 TP391
字数 2119字 语种 中文
DOI 10.16508/j.cnki.11-5866/n.2019.05.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘亚辉 北京信息科技大学信息管理学院 28 34 3.0 4.0
2 苏良立 2 2 1.0 1.0
3 韩明轩 北京信息科技大学信息管理学院 1 2 1.0 1.0
4 郭俊岑 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (12)
参考文献  (2)
节点文献
引证文献  (2)
同被引文献  (6)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DBSCAN
ARIMA
短期电力负荷
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京信息科技大学学报(自然科学版)
双月刊
1674-6864
11-5866/N
大16开
北京市
1986
chi
出版文献量(篇)
2043
总下载数(次)
10
总被引数(次)
11074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导