基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对复杂环境下NLOS信号接收造成的GNSS定位精度恶化问题,提出了一种基于无监督学习的卫星NLOS信号检测方法.综合考虑了信号载噪比、伪距残差和卫星高度角对于GNSS接收信号的影响,采用k-means++聚类算法将观测数据划分为LOS、多径和NLOS三类,并对NLOS信号进行分离.使用GPS/BDS双系统伪距单点定位对信号分类效果进行了验证.结果表明,采用该方法剔除NLOS信号后定位精度得到了显著的提升.静态实验中,对1h的数据样本进行聚类,事后定位精度提高了约30%,实时定位精度提高约12%.动态实验中,城市峡谷路段东、北、天3个方向的定位精度分别提高了27.98%、8.06%和3.66%.相较于有监督学习的分类方法,该方法简单有效、易于实现,且无需使用先验信息,能显著降低运算负荷和GNSS设备成本.与传统的阈值法以及RAIM算法相比较,该方法在改善定位的精度方面具有一定的优势.
推荐文章
基于无监督学习的行人检测算法
行人检测
无监督
稀疏编码
非线性变换
非极大值抑制
基于非监督学习的入侵分析新方法
入侵检测
非监督学习
机器学习
基于无监督学习的P2P流量识别
流量识别
数据挖掘
无监督学习
基于半监督学习的应用流分类方法
流量分类
半监督学习
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于无监督学习的卫星NLOS信号检测方法
来源期刊 东南大学学报(自然科学版) 学科 地球科学
关键词 无监督学习 NLOS k-means++聚类算法 双系统 伪距单点定位
年,卷(期) 2019,(3) 所属期刊栏目
研究方向 页码范围 565-572
页数 8页 分类号 P228.1
字数 6830字 语种 中文
DOI 10.3969/j.issn.1001-0505.2019.03.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 潘树国 东南大学仪器科学与工程学院 115 923 16.0 22.0
2 夏炎 东南大学仪器科学与工程学院 16 128 7.0 11.0
3 赵庆 东南大学交通学院 8 8 2.0 2.0
4 赵鹏飞 东南大学仪器科学与工程学院 2 15 1.0 2.0
5 叶飞 东南大学仪器科学与工程学院 10 87 4.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无监督学习
NLOS
k-means++聚类算法
双系统
伪距单点定位
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
总被引数(次)
71314
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导