基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统粒子群算法收敛速度慢、无法描述离散问题以及后期容易陷入局部最优解的缺陷等问题,提出一种基于汉明距离与免疫思想的改进粒子群算法(IHPSO).首先,引入汉明距离表示位置与速度更新,使传统粒子群算法能够求解离散问题;然后,融入免疫接种、免疫选择等免疫思想,定义新的种群更新方式,解决了传统粒子群算法收敛速度慢、易陷入局部最优解的弊端;最后,通过TSP问题的模拟实验证明了改进的粒子群算法在求解速度与精度等方面均有明显提高.
推荐文章
基于免疫粒子群优化算法的增量式PID控制
粒子群优化算法(PSO)
增量式PID控制
免疫算法(IM)
基于邻域思想的改进粒子群优化算法
粒子群优化
邻域
群智能
基于分类思想的改进粒子群优化算法
粒子群优化
参数改进
适度值
适度值均值
适度值标准差
粒子分类
有效经验
基于免疫粒子群算法的参数估计方法
免疫算法
粒子群算法
参数估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于汉明距离与免疫思想的粒子群算法
来源期刊 重庆理工大学学报(自然科学版) 学科 工学
关键词 粒子群算法 汉明距离 免疫思想 TSP
年,卷(期) 2019,(4) 所属期刊栏目 信息·计算机
研究方向 页码范围 122-127
页数 6页 分类号 TP18
字数 4655字 语种 中文
DOI 10.3969/j.issn.1674-8425(z).2019.04.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李梁 重庆理工大学计算机科学与工程学院 15 242 7.0 15.0
2 陈亚茹 重庆理工大学计算机科学与工程学院 11 19 3.0 4.0
3 丛培强 重庆理工大学计算机科学与工程学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (198)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(3)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
汉明距离
免疫思想
TSP
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
总被引数(次)
41083
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导