基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了贝叶斯网络分类器的高效参数学习方法.生成方法解决联合分布的参数估计问题,而判别方法解决后验分布的参数估计问题.对判别参数学习方法的研究,首先通过建立类条件贝叶斯网络模型;在此基础上,对该模型以对数形式参数化,得到判别类条件贝叶斯网络模型;最后,通过改进粒子群算法对该模型进行最优化求解,得到各节点的概率.将贝叶斯网络分类器的判别参数学习方法与TAN分类器相结合,可用于对液体火箭发动机的故障诊断与分类中.针对某型号火箭的两次仿真数据进行故障诊断与分类,与其他方法相比,改进的分类器需要的数据量小,准确率和学习效率更高.
推荐文章
基于MapReduce的贝叶斯网络参数学习方法
大数据
贝叶斯网络
参数学习
期望最大化算法
MapReduce
基于预测能力的贝叶斯网络分类器学习
贝叶斯网络
分类器
预测能力
基于贝叶斯网络的海量数据多维分类学习方法研究
多维分类
贝叶斯网络
机器学习
海量数据
基于参数学习贝叶斯网络的对敌空中目标融合识别
参数学习
目标识别
贝叶斯网络
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯网络分类器的基于改进粒子群参数学习方法
来源期刊 应用科技 学科 工学
关键词 贝叶斯网络 判别参数学习 改进粒子群 故障诊断
年,卷(期) 2019,(4) 所属期刊栏目 自动化技术
研究方向 页码范围 32-36,41
页数 6页 分类号 TP391
字数 3805字 语种 中文
DOI 10.11991/yykj.201809018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王志胜 南京航空航天大学自动化学院 83 518 13.0 19.0
2 刘久富 南京航空航天大学自动化学院 53 207 8.0 11.0
3 王彪 南京航空航天大学自动化学院 69 795 12.0 25.0
4 杨忠 南京航空航天大学自动化学院 125 1388 18.0 32.0
5 郑锐 南京航空航天大学自动化学院 9 4 1.0 1.0
6 丁晓彬 南京航空航天大学自动化学院 8 2 1.0 1.0
7 刘海洋 东南大学电子信息工程学院 3 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (26)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(4)
  • 参考文献(4)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
贝叶斯网络
判别参数学习
改进粒子群
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科技
双月刊
1009-671X
23-1191/U
大16开
哈尔滨市南通大街145号1号楼
14-160
1974
chi
出版文献量(篇)
4861
总下载数(次)
7
总被引数(次)
21528
论文1v1指导