钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
代表特征网络的小样本学习方法
代表特征网络的小样本学习方法
作者:
杨娟
汪荣贵
薛丽霞
郑岩
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
小样本学习
度量学习
代表特征网络
混合损失函数
微调
摘要:
目的 小样本学习任务旨在仅提供少量有标签样本的情况下完成对测试样本的正确分类.基于度量学习的小样本学习方法通过将样本映射到嵌入空间,计算距离得到相似性度量以预测类别,但未能从类内多个支持向量中归纳出具有代表性的特征以表征类概念,限制了分类准确率的进一步提高.针对该问题,本文提出代表特征网络,分类效果提升显著.方法 代表特征网络通过类代表特征的度量学习策略,利用类中支持向量集学习得到的代表特征有效地表达类概念,实现对测试样本的正确分类.具体地说,代表特征网络包含两个模块,首先通过嵌入模块提取抽象层次高的嵌入向量,然后堆叠嵌入向量经过代表特征模块得到各个类代表特征.随后通过计算测试样本嵌入向量与各类代表特征的距离以预测类别,最后使用提出的混合损失函数计算损失以拉大嵌入空间中相互类别间距减少相似类别错分情况.结果 经过广泛实验,在Omniglot、miniImageNet和Cifar100数据集上都验证了本文模型不仅可以获得目前已知最好的分类准确率,而且能够保持较高的训练效率.结论 代表特征网络可以从类中多个支持向量有效地归纳出代表特征用于对测试样本的分类,对比直接使用支持向量进行分类具有更好的鲁棒性,进一步提高了小样本条件下的分类准确率.
暂无资源
收藏
引用
分享
推荐文章
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
小样本深度学习方法实现LED TV屏缺陷检测
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
小样本贝叶斯网络参数学习方法
贝叶斯网络
参数学习
小样本
迁移学习
目标域
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
代表特征网络的小样本学习方法
来源期刊
中国图象图形学报
学科
工学
关键词
小样本学习
度量学习
代表特征网络
混合损失函数
微调
年,卷(期)
2019,(9)
所属期刊栏目
图像分析和识别
研究方向
页码范围
1514-1527
页数
14页
分类号
TP319
字数
8942字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
汪荣贵
合肥工业大学计算机与信息学院
104
1458
21.0
34.0
2
薛丽霞
合肥工业大学计算机与信息学院
27
72
5.0
7.0
3
杨娟
合肥工业大学计算机与信息学院
47
121
5.0
8.0
4
郑岩
合肥工业大学计算机与信息学院
3
12
2.0
3.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(24)
共引文献
(49)
参考文献
(8)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1971(1)
参考文献(0)
二级参考文献(1)
1990(1)
参考文献(0)
二级参考文献(1)
1994(1)
参考文献(0)
二级参考文献(1)
1997(1)
参考文献(0)
二级参考文献(1)
2005(1)
参考文献(1)
二级参考文献(0)
2006(1)
参考文献(0)
二级参考文献(1)
2010(2)
参考文献(1)
二级参考文献(1)
2011(1)
参考文献(0)
二级参考文献(1)
2012(1)
参考文献(0)
二级参考文献(1)
2013(1)
参考文献(0)
二级参考文献(1)
2015(6)
参考文献(1)
二级参考文献(5)
2016(5)
参考文献(0)
二级参考文献(5)
2017(6)
参考文献(1)
二级参考文献(5)
2018(4)
参考文献(4)
二级参考文献(0)
2019(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
小样本学习
度量学习
代表特征网络
混合损失函数
微调
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
基于特征关系依赖网络的小样本学习方法
2.
小样本深度学习方法实现LED TV屏缺陷检测
3.
浮空器主缆绳表面的小样本学习缺陷检测研究
4.
小样本贝叶斯网络参数学习方法
5.
基于小样本学习的地面结露结霜现象检测方法
6.
基于边缘感知和小样本学习的多尺度带钢表面缺陷分割方法
7.
基于卷积神经网络的小样本树皮图像识别方法
8.
面向人体行为识别的深度特征学习方法比较
9.
基于改进关系网络的小样本学习
10.
基于数据生成与迁移学习的轴承小样本故障诊断
11.
基于小样本集弱学习规则的KNN分类算法
12.
小样本成败型设备可靠性评估方法
13.
支持向量机在小样本预测中的应用
14.
一种新颖的小样本整体趋势扩散技术
15.
基于深度神经网络的少样本学习综述
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2019年第9期
中国图象图形学报2019年第8期
中国图象图形学报2019年第7期
中国图象图形学报2019年第6期
中国图象图形学报2019年第5期
中国图象图形学报2019年第4期
中国图象图形学报2019年第3期
中国图象图形学报2019年第2期
中国图象图形学报2019年第12期
中国图象图形学报2019年第11期
中国图象图形学报2019年第10期
中国图象图形学报2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号