基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 小样本学习任务旨在仅提供少量有标签样本的情况下完成对测试样本的正确分类.基于度量学习的小样本学习方法通过将样本映射到嵌入空间,计算距离得到相似性度量以预测类别,但未能从类内多个支持向量中归纳出具有代表性的特征以表征类概念,限制了分类准确率的进一步提高.针对该问题,本文提出代表特征网络,分类效果提升显著.方法 代表特征网络通过类代表特征的度量学习策略,利用类中支持向量集学习得到的代表特征有效地表达类概念,实现对测试样本的正确分类.具体地说,代表特征网络包含两个模块,首先通过嵌入模块提取抽象层次高的嵌入向量,然后堆叠嵌入向量经过代表特征模块得到各个类代表特征.随后通过计算测试样本嵌入向量与各类代表特征的距离以预测类别,最后使用提出的混合损失函数计算损失以拉大嵌入空间中相互类别间距减少相似类别错分情况.结果 经过广泛实验,在Omniglot、miniImageNet和Cifar100数据集上都验证了本文模型不仅可以获得目前已知最好的分类准确率,而且能够保持较高的训练效率.结论 代表特征网络可以从类中多个支持向量有效地归纳出代表特征用于对测试样本的分类,对比直接使用支持向量进行分类具有更好的鲁棒性,进一步提高了小样本条件下的分类准确率.
推荐文章
基于特征关系依赖网络的小样本学习方法
深度学习
小样本学习
度量学习
特征优化
原型调整
小样本深度学习方法实现LED TV屏缺陷检测
机器视觉
迁移学习
增量学习
FCNet
LED TV
缺陷检测
浮空器主缆绳表面的小样本学习缺陷检测研究
缺陷检测
小样本学习
度量学习
浮空器
小样本贝叶斯网络参数学习方法
贝叶斯网络
参数学习
小样本
迁移学习
目标域
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 代表特征网络的小样本学习方法
来源期刊 中国图象图形学报 学科 工学
关键词 小样本学习 度量学习 代表特征网络 混合损失函数 微调
年,卷(期) 2019,(9) 所属期刊栏目 图像分析和识别
研究方向 页码范围 1514-1527
页数 14页 分类号 TP319
字数 8942字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪荣贵 合肥工业大学计算机与信息学院 104 1458 21.0 34.0
2 薛丽霞 合肥工业大学计算机与信息学院 27 72 5.0 7.0
3 杨娟 合肥工业大学计算机与信息学院 47 121 5.0 8.0
4 郑岩 合肥工业大学计算机与信息学院 3 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (49)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(5)
  • 参考文献(0)
  • 二级参考文献(5)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小样本学习
度量学习
代表特征网络
混合损失函数
微调
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导