基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高互联网中在线评论文本的情感倾向分类准确率,方便消费者和商家准确高效地获取信息,该文提出一种将语义规则方法与深度学习方法相结合的在线评论文本情感分类模型,对基于情感词典的语义规则信息进行扩展,嵌入到常用特征模板中组合成更有效的混合特征模板;采用Fisher判别准则方法对混合特征模板进行降维以消除特征间的信息冗余;深度学习模型采用基于LSTM改进的RNN模型,将网络爬取的数据输入到模型进行训练和测试.结果表明,语义规则抽取出的特征包含更多、更准确的情感信息,使得混合特征模板可以更加全面地考虑文本的情感特征粒度;Fisher准则可有效识别出高判别性的低维文本特征,进一步提高改进RNN模型对评论文本的分类性能.
推荐文章
基于在线评论的网络视频情感分类平台设计与实现
在线评论
网络视频
情感分类
平台设计
情感极性
情感相似性
基于语义分析的在线评论文本情感分类算法研究
在线评论
情感分类
语义分析
词向量
非负矩阵分解
基于规则的情感本体和词向量的中文情感分类
句法规则
Word2vec
情感本体
情感词典
基于在线评论的网络视频情感分类平台设计与实现
在线评论
网络视频
情感分类
平台设计
情感极性
情感相似性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于语义规则与RN N模型的在线评论情感分类研究
来源期刊 中文信息学报 学科 社会科学
关键词 在线评论 情感分类 递归神经网络 情感语义规则
年,卷(期) 2019,(6) 所属期刊栏目 情感分析与社会计算
研究方向 页码范围 124-131
页数 8页 分类号 G206.3
字数 6719字 语种 中文
DOI 10.3969/j.issn.1003-0077.2019.06.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邵良杉 辽宁工程技术大学系统工程研究所 189 1464 18.0 27.0
2 周玉 辽宁工程技术大学系统工程研究所 6 17 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (87)
共引文献  (96)
参考文献  (12)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(15)
  • 参考文献(2)
  • 二级参考文献(13)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
在线评论
情感分类
递归神经网络
情感语义规则
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导