原文服务方: 东北林业大学学报       
摘要:
根据红松子品质检测方面技术缺失的现状,提出了运用近红外技术建立松子光-化学模型的解决办法;在对比流形学习有效保留高维数据的低维特征的优势和近红外传统降维方法主成分分析对非线性结构不敏感问题后,提出了具有能够捕捉高维空间中低维流形功能的局部线性嵌入-高斯过程(LLE-GP)方法,用于解决传统线性主成分分析(PCA)方法可能损失有用信息的缺陷;使用变量标准化(SNV)与Savitzky-Golay平滑方法进行预处理后,使用局部线性嵌入-高斯过程方法对数据进行分类建模.运用近红外光谱仪采集的松子数据,对这一算法进行验证,结果表明:局部线性嵌入-高斯过程分类模型,可以良好的使用在品质检测分类建模中.
推荐文章
基于近红外的松子蛋白质品质分类处理
松子
近红外
支持向量机
蛋白质
流形学习中的算法研究
流形学习
主流形
局部线性嵌套
等度规映射
变分法
互信息
流形学习中非线性维数约简方法概述
维数约简
流形学习
多维尺度
等距映射
拉普拉斯特征映射
局部线性嵌入
局部切空间排列
非线性流形降维方法结合近红外光谱技术快速鉴别不同海拔的茶叶
茶叶
近红外光谱
非线性流形降维方法
拉普拉斯特征映射
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 依据流形学习的局部线性嵌入对红松子品质近红外检测
来源期刊 东北林业大学学报 学科
关键词 高斯过程 局部线性嵌入 近红外 红松子
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 45-48
页数 4页 分类号 S789.5|TP181
字数 语种 中文
DOI 10.3969/j.issn.1000-5382.2019.06.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹军 133 1090 17.0 23.0
2 张冬妍 53 250 10.0 13.0
3 蒋大鹏 6 2 1.0 1.0
4 周宝龙 1 0 0.0 0.0
5 赵思琦 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (28)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(7)
  • 参考文献(1)
  • 二级参考文献(6)
2018(7)
  • 参考文献(7)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高斯过程
局部线性嵌入
近红外
红松子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北林业大学学报
月刊
1000-5382
23-1268/S
大16开
1957-01-01
chi
出版文献量(篇)
7235
总下载数(次)
0
总被引数(次)
68015
论文1v1指导