基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
起重机是一种使用广泛的物流设备,然而在长期高负载运作下,由于机械磨损、疲劳断裂产生的裂纹以及长期暴露于高温、潮湿环境下造成的机械腐蚀是无法避免的问题.传统的人工检测,一方面无法保证检测人员的作业安全,另一方面无法保证检测的全面性.因此,提出一种基于深度卷积神经网络的起重机金属结构缺陷视觉检测算法.由于起重机金属结构缺陷图像数据的规模小于深层次卷积神经网络所需的数据规模,容易导致过拟合,故先设计浅层次的卷积神经网络模型,再采用深层次的卷积神经网络训练浅层次卷积神经网络,得到一个深层次与浅层次的双网络并行模型,以此达到提高浅层次卷积神经网络检测的准确性和鲁棒性.实验上,通过双网络并行模型算法与单网络模型、传统机器视觉识别方式的实验性能对比,验证了该算法的有效性和更好的鲁棒性.
推荐文章
PLC网络在缆索式起重机中的应用
PLC网络
缆索式起重机
控制系统
通信
协议
无损检测技术在起重机械安全检验中的应用
起重机械
无损检测
检测方法应用
无损检测技术在起重机械安全检验中的运用分析
无损检测
起重机械
安全检验
运用分析
贝叶斯网络在起重机故障诊断中的应用研究
起重机
贝叶斯网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 应用于起重机智能视觉检测的双网络并行模型
来源期刊 厦门大学学报(自然科学版) 学科 工学
关键词 起重机 双网络 并行模型 视觉检测 卷积神经网络 缺陷
年,卷(期) 2019,(6) 所属期刊栏目 研究简报
研究方向 页码范围 922-928
页数 7页 分类号 TP23
字数 5287字 语种 中文
DOI 10.6043/j.issn.0438-0479.201902009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑祥盘 闽江学院物理与电子信息工程学院 12 24 3.0 4.0
2 宋国进 闽江学院物理与电子信息工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (38)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (7)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
起重机
双网络
并行模型
视觉检测
卷积神经网络
缺陷
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
厦门大学学报(自然科学版)
双月刊
0438-0479
35-1070/N
大16开
福建省厦门市厦门大学囊萤楼218-221室
34-8
1931
chi
出版文献量(篇)
4740
总下载数(次)
7
总被引数(次)
51714
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导