基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的神经网络结构不能很好地处理序列问题.通过对历史台风数据库中的台风分类,提出基于门控单元网络的台风路径预测模型.利用历史台风的经纬度信息,分别用普通循环神经网络、长短时记忆网络和门控单元网络预测台风未来6小时位置信息.实验表明,在测试集上门控单元网络具有最小的平均绝对误差,能够有效提高路径预测精度,与稀疏循环神经网络预测方法相比,有更小的平均绝对误差.
推荐文章
门控递归单元神经网络坐标变换盲均衡算法
盲均衡
门控递归单元
神经网络
代价函数
坐标变换
码间干扰
基于门控递归神经网络的电网日峰值负荷预测
峰值负荷预测
动态时间规整
热编码
门控递归单元
基于BP神经网络的台风降雨量预测研究
BP神经网络
台风
降水量
预测
基于门控循环单元神经网络的金融时间序列预测
循环神经网络
门控循环单元
差分运算
金融时间序列预测
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于门控单元循环神经网络的台风路径预测
来源期刊 计算机应用与软件 学科 工学
关键词 动态规整 相似度 长短时记忆网络 门控单元网络 路径预测
年,卷(期) 2019,(5) 所属期刊栏目 人工智能与识别
研究方向 页码范围 119-125
页数 7页 分类号 TP183
字数 3799字 语种 中文
DOI 10.3969/j.issn.1000-386x.2019.05.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴凤波 西南交通大学土木工程学院 4 2 1.0 1.0
2 黄国庆 重庆大学土木工程学院 15 64 4.0 7.0
4 徐高扬 西南交通大学数学学院 2 1 1.0 1.0
5 郑海涛 西南交通大学数学学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (23)
参考文献  (11)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
动态规整
相似度
长短时记忆网络
门控单元网络
路径预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导