基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前SAR图像目标检测算法只能进行单一目标检测和检测精度不高的问题,对深度学习目标检测框架在SAR图像目标检测的应用进行了实验研究,并结合SAR图像特点进行了优化.比较了基于区域建议的Faster-RCNN和无需区域建议的SSD目标检测框架在SAR图像上的目标检测精度和速度,分析优缺点;研究了预训练模型对SAR图像目标检测精度的影响;最后通过零均值规整化提高收敛速度和检测精度.实验结果表明优化后的目标检测框架,实现了SAR图像多目标识别并提高了检测精度,可以有效地应用于SAR图像多目标检测.
推荐文章
基于RetinaNet的SAR图像舰船目标检测
合成孔径雷达(SAR)图像
舰船目标检测
深度学习
RetinaNet
基于聚类的SAR图像快速目标检测
合成孔径雷达图像
目标检测
恒虚警率检测
Mean Shift聚类
基于 NSCT分解系数的SAR图像目标检测算法
合成孔径雷达图像
恒虚警率
非下采样轮廓波变换
目标检测
多尺度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的SAR图像目标检测实验
来源期刊 火力与指挥控制 学科 工学
关键词 合成孔径雷达 目标检测 深度学习 Faster-RCNN SSD
年,卷(期) 2019,(10) 所属期刊栏目 工程实践
研究方向 页码范围 131-135
页数 5页 分类号 TN957.51
字数 3747字 语种 中文
DOI 10.3969/j.issn.1002-0640.2019.10.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡永江 陆军工程大学无人机工程系 23 94 5.0 9.0
2 王长龙 陆军工程大学无人机工程系 6 7 1.0 2.0
3 林志龙 陆军工程大学无人机工程系 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (37)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(5)
  • 参考文献(4)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
合成孔径雷达
目标检测
深度学习
Faster-RCNN
SSD
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
火力与指挥控制
月刊
1002-0640
14-1138/TJ
大16开
山西太原193号信箱
22-134
1976
chi
出版文献量(篇)
9188
总下载数(次)
26
总被引数(次)
34280
论文1v1指导