基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的ACF+AdaBoost行人检测框架在达到较为理想的检测率时,误检率也会迅速增高,难以满足实际需求。针对该问题,本文提出了一种自适应加权的Hash码特征,用来增加行人特征的多样性。在此基础上,通过级联一个辅助网络降低系统的误检率,该辅助网络采用了浅层的CNN结构,在保证系统实时性的前提下对AdaBoost分类器的分类结果进行二次分类。在INRIA数据中进行检测实验的结果表明,改进的Hash码简单、易算,对行人的表征能力强,在不影响实时性的前提下,把系统的MR-FPPI(Miss rate against false positive sperimage)从17.05%降低到16.31%。系统级联辅助CNN后系统的MR-FPPI降低到16.93%,而加入Hash码通道,且级联辅助CNN后,系统的MR-FPPI降低到15.96%,检测性能得到较为明显的提高。
推荐文章
基于自适应特征卷积网络的行人检测方法
行人检测
卷积神经网络
浅层细节特征
自适应特征
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
基于残差网络的特征加权行人重识别研究
残差网络
行人重识别
特征加权
注意力机制
相似性度量
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于加权Hash特征与卷积辅助网络的ACF行人检测研究
来源期刊 长春师范大学学报 学科 工学
关键词 行人检测 ACF ADABOOST Hash码 CNN
年,卷(期) ccsfdxxb_2019,(4) 所属期刊栏目
研究方向 页码范围 33-39
页数 7页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王江涛 淮北师范大学物理与电子信息学院 46 87 6.0 7.0
2 陈燕 淮北师范大学物理与电子信息学院 7 3 1.0 1.0
3 王薇薇 淮北师范大学物理与电子信息学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人检测
ACF
ADABOOST
Hash码
CNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
长春师范大学学报
月刊
2095-7602
22-1409/G4
大16开
吉林省长春市长吉北路677号
12-326
1982
chi
出版文献量(篇)
1626
总下载数(次)
6
论文1v1指导