基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着推荐算法在众多领域的广泛应用,冷启动问题得到了越来越多的关注.针对仅可获得老用户对商品文字评价的场景,提出了一套解决用户冷启动问题的方案与算法.首先通过分析发现了文章主题提取与基于商品评价提取特征的相似性,因此引入自然语言处理领域的LDA(latent Dirichlet allocation)生成模型提取商品潜在特征;然后在传统Bandits算法的基础上融入邻居用户的协同作用提出了COLINBA(collaborative filtering context linear Bandits)算法,该算法通过相似度权重因子控制邻居用户对推荐结果的贡献,使得协同作用更加精确有效,推荐完成后根据用户真实反馈以及所推荐商品的特征更新用户特征.最后采用真实数据集Delicious和Last.fm将该算法与该领域的最新方法进行比较,实验结果表明该算法对推荐效果有提升作用.
推荐文章
一种基于时间和标签上下文的协同过滤推荐算法
推荐系统
概率矩阵分解
时间上下文
标签上下文
基于情景上下文与信任关系的旅游景点推荐算法
情景上下文
信任度
协同过滤
推荐
个性化
基于谱聚类与多因子融合的协同过滤推荐算法
协同过滤
谱聚类
Salton因子
时间衰减因子
用户偏好因子
融合协同过滤的XGBoost推荐算法
协同过滤
冷启动
XGBoost
推荐系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合协同过滤与上下文信息的Bandits推荐算法*
来源期刊 计算机科学与探索 学科 工学
关键词 推荐系统 冷启动 多臂赌博机 协同过滤
年,卷(期) 2019,(3) 所属期刊栏目 学术研究
研究方向 页码范围 361-373
页数 13页 分类号 TP301
字数 11747字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 侯永宏 天津大学电气自动化与信息工程学院 31 228 7.0 14.0
2 王宝亮 天津大学电气自动化与信息工程学院 25 135 7.0 10.0
3 王宇琛 天津大学电气自动化与信息工程学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (2)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
冷启动
多臂赌博机
协同过滤
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导