基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于股指期货数据量大,数据噪声较多等多个特点,采用小波去噪的方法首先对选取的数据进行清洗,再利用神经网络进行训练预测,发现这样相结合的方法可以有效减少神经网络模型的误差.选取2012年7月24日至2018年10月12日共1528个交易日的最低价、最高价、开盘价和收盘价的沪深300股指期货数据作为神经网络模型的学习分析对象,通过不断地修改参数,调试从而减小误差,再对未来走势进行预测.结果发现BP神经网络模型与Elman神经网络模型比较, BP神经网络模型对于股指期货数据的分析预测更具有优越性,最终的预测结果与实际相比准确率能够达到98.9%.因此结合小波去噪的BP神经网络模型能够明显地减小了误差,提高了预测的精确度.
推荐文章
基于小波去噪及优化BP神经 网络的滑坡变形预测研究
滑坡
小波去噪
混沌理论
BP神经网络
变形预测
改进粒子群算法的小波神经网络语音去噪
小波神经网络
粒子群优化算法
语音去噪
Matlab
基于EEMD小波阈值去噪和CS-BP神经网络的风电齿轮箱故障诊断
风电齿轮箱
故障诊断
EEMD分解
小波阈值去噪
CS-BP
基于小波神经网络模型的含沙量预测研究
小波函数
BP神经网络
含沙量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波去噪和神经网络的期货预测模型
来源期刊 长春理工大学学报(自然科学版) 学科 工学
关键词 小波去噪 沪深300期货 BP神经网络 预测
年,卷(期) 2019,(4) 所属期刊栏目
研究方向 页码范围 129-132,142
页数 5页 分类号 O211.61|TP18
字数 2722字 语种 中文
DOI 10.3969/j.issn.1672-9870.2019.04.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 施三支 长春理工大学理学院 25 33 3.0 4.0
2 张煌 长春理工大学理学院 1 0 0.0 0.0
3 梁朋 长春理工大学理学院 1 0 0.0 0.0
4 肖琨武 长春理工大学光电工程学院 1 0 0.0 0.0
5 徐嘉蔚 长春理工大学光电工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (9)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波去噪
沪深300期货
BP神经网络
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
长春理工大学学报(自然科学版)
双月刊
1672-9870
22-1364/TH
16开
长春市卫星路7089号
1978
chi
出版文献量(篇)
3546
总下载数(次)
14
总被引数(次)
15546
相关基金
吉林省自然科学基金
英文译名:
官方网址:http://kyc.nedu.edu.cn/xxcx/xmzl/sqsjddxs2.htm
项目类型:
学科类型:
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导