基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统半监督非参核学习方法通常基于流形假设和成对约束信息建立学习模型.但是,这种模型对于某些复杂高维稀疏的数据而言算法复杂性较高.为了解决复杂高维稀疏数据核学习问题,提出一种基于稀疏自编码的非参核学习算法,通过稀疏自编码器引入稀疏约束,不仅提高了非参核学习方法的鲁棒性,避免了过拟合问题,而且提升了非参核学习算法的学习效率.通过核聚类实验验证了提出算法的有效性.实验结果表明,在非参核学习模型中融入了稀疏自编码器能够提高核聚类的效果,提升了半监督非参核学习算法的学习效率.
推荐文章
基于约束低秩表示模型的联合半监督分类算法
低秩表示
约束矩阵
约束的低秩表示
半监督学习
基于稀疏与低秩的核磁共振图像重构算法
核磁共振成像
低秩
稀疏
赤池信息量准则
奇异值分解
全变分
稀疏和标签约束半监督自动编码器的分类算法
分类
稀疏约束
标签约束
自动编码器
极限学习机
基于低秩矩阵恢复的DOA稀疏重构方法
波达方向
非均匀噪声
低秩矩阵恢复
二阶统计量
加权l1范数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏编码的半监督低秩核学习算法
来源期刊 计算机工程与应用 学科 工学
关键词 半监督学习 成对约束 自编码器 稀疏编码
年,卷(期) 2019,(7) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 175-181
页数 7页 分类号 TP391
字数 5709字 语种 中文
DOI 10.3778/j.issn.1002-8331.1712-0069
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周勇 中国矿业大学计算机科学与技术学院 85 984 16.0 29.0
2 刘兵 中国矿业大学计算机科学与技术学院 34 203 9.0 13.0
3 杨烁 中国矿业大学计算机科学与技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (25)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(3)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
半监督学习
成对约束
自编码器
稀疏编码
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导