基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统的聚类算法对初始聚类中心敏感、只能对单一属性聚类且聚类效果有时欠佳等不足,提出了一种能处理数值属性和分类属性的Gk-prototypes聚类算法.在经典的k-prototypes聚类算法的基础上,利用去模糊相似矩阵来构造粗粒子集,结合粒计算和最大最小距离法确定初始聚类中心,并改进了目标函数.实验结果和理论分析表明,Gk-prototypes聚类算法与其他基于k-prototypes的改进算法相比,聚类更准确,有效性更好,鲁棒性更强.
推荐文章
一种有效的多关系聚类算法
多关系数据挖掘
聚类
元组ID传播
相似度
K中心点聚类算法
一种能发现自然聚类的聚类算法
数据挖掘
聚类
神经网络
网格
动态模型
一种免疫动态模糊聚类算法
人工免疫
克隆选择
聚类有效性分析
动态聚类
一种改进的可能模糊聚类算法
样本加权
模糊聚类
可能模糊聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种有效的Gk-prototypes聚类算法
来源期刊 计算机工程与科学 学科 工学
关键词 k-prototypes聚类 去模糊相似矩阵 粒计算 最大最小距离法
年,卷(期) 2019,(9) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 1693-1699
页数 7页 分类号 TP181.1
字数 6920字 语种 中文
DOI 10.3969/j.issn.1007-130X.2019.09.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐蔚鸿 长沙理工大学计算机与通信工程学院 85 647 14.0 21.0
2 陈沅涛 长沙理工大学计算机与通信工程学院 34 125 7.0 10.0
3 郭映江 长沙理工大学计算机与通信工程学院 1 0 0.0 0.0
4 文泽林 长沙理工大学计算机与通信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (59)
共引文献  (232)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(1)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(6)
  • 参考文献(2)
  • 二级参考文献(4)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(4)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
k-prototypes聚类
去模糊相似矩阵
粒计算
最大最小距离法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导